Giải hệ phương trình
xy - 4x - y + 2 = 0
và
x^2 - 2x = y^2 - 8y + 18
Giải hệ phương trình:
phương trình 1:x2-5y2-8y=3
phương trình 2:(2x+4y-1)√(2x-y-1)=(4x-2y-3)√(x+2y)
1, giải hệ phương trình:\(\left\{{}\begin{matrix}y^3-2x^3+3x^2y-3xy^2=0\\x^2y^2-4x^2y-y^2-8x+8y+4=0\end{matrix}\right.\)
\(y^3+3x^2y-3xy^2-2x^3=0\)
\(\Leftrightarrow\left(y^3-xy^2+x^2y\right)-2\left(x^3-x^2y+xy^2\right)=0\)
\(\Leftrightarrow y\left(x^2-xy+y^2\right)-2x\left(x^2-xy+y^2\right)=0\)
\(\Leftrightarrow\left(y-2x\right)\left(x^2-xy+y^2\right)=0\)
\(\Rightarrow y=2x\)
Thế xuống dưới:
\(x^4-2x^3-x^2+2x+1=0\)
Nhận thấy \(x=0\) ko phải nghiệm, chia 2 vế cho \(x^2\)
\(x^2+\frac{1}{x^2}-2\left(x-\frac{1}{x}\right)-1=0\)
Đặt \(x-\frac{1}{x}=t\Rightarrow x^2+\frac{1}{x^2}=t^2+2\) pt trở thành:
\(t^2-2t+1=0\Leftrightarrow t=1\)
\(\Leftrightarrow x-\frac{1}{x}=1\Leftrightarrow x^2-x-1=0\Leftrightarrow...\)
giải hệ phương trình : \(\left\{{}\begin{matrix}x^2-5y^2-8y=3\\\left(2x+4y-1\right)\sqrt{2x-y-1}=\left(4x-2y-3\right)\sqrt{x+2y}\end{matrix}\right.\)
Từ \(pt\left(2\right)\Leftrightarrow\left(2x+4y-1\right)^2\left(2x-y-1\right)=\left(4x-2y-3\right)^2\left(x+2y\right)\)
\(\Leftrightarrow-\left(x-3y-1\right)\left(8x^2-8y^2-4x-8y+12xy-1\right)=0\)
tự làm nốt đi (nóng quááááááááááááááá)
Giải hệ phương trình: \(\left\{{}\begin{matrix}x^2-5y^2-8y=3\\\left(2x+4y-1\right)\sqrt{2x-y-1}=\left(4x-2y-3\right)\sqrt{x+2y}\end{matrix}\right.\)
ĐKXĐ:...
Đặt \(\left\{{}\begin{matrix}\sqrt{2x-y-1}=a\ge0\\\sqrt{x+2y}=b\ge0\end{matrix}\right.\)
Khi đó pt dưới trở thành:
\(\left(2b^2-1\right)a=\left(2a^2-1\right)b\)
\(\Leftrightarrow2a^2b-2ab^2+a-b=0\)
\(\Leftrightarrow2ab\left(a-b\right)+a-b=0\)
\(\Leftrightarrow\left(a-b\right)\left(2ab+1\right)=0\)
\(\Leftrightarrow a=b\) (do \(a;b\ge0\Rightarrow2ab+1>0\))
\(\Rightarrow\sqrt{2x-y-1}=\sqrt{x+2y}\)
\(\Leftrightarrow2x-y-1=x+2y\)
\(\Leftrightarrow x=3y+1\)
Thay vào pt đầu:
\(\left(3y+1\right)^2-5y^2-8y=3\)
Bạn giải nốt
Giải phương trình nghiệm nguyên
a) \(3x^2-4y^2=18\)
b) \(19x^2+28y^2=2001\)
c) \(x^2=2y^2-8y+3\)
d) \(x^2+y^2-4x+4y=1\)
d) \(x^2+y^2-4x+4y=1\\ \Rightarrow\left(x-2\right)^2+\left(y+2\right)^2=8\)
\(\Rightarrow8=\left(x-2\right)^2+\left(y+2\right)^2\ge\left(x-2\right)^2\)
\(\Rightarrow\left(x-2\right)^2\le8\)
Mà \(\left(x-2\right)^2\) là SCP và là số chẵn nên \(\left(x-2\right)^2\in\left\{0;4\right\}\)
Th1: \(\left(x-2\right)^2=0\Rightarrow\left(y+2\right)^2=8\left(vôlí\right)\)
Th2: \(\left(x-2\right)^2=4\Rightarrow\left(y+2\right)^2=4\)\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-2=-2\\y+2=-2\end{matrix}\right.\\\left\{{}\begin{matrix}x-2=-2\\y+2=2\end{matrix}\right.\\\left\{{}\begin{matrix}x-2=2\\y+2=-2\end{matrix}\right.\\\left\{{}\begin{matrix}x-2=2\\y+2=2\end{matrix}\right.\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=0\\y=-4\end{matrix}\right.\\\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\\\left\{{}\begin{matrix}x=4\\y=-4\end{matrix}\right.\\\left\{{}\begin{matrix}x=4\\y=0\end{matrix}\right.\end{matrix}\right.\)
Vậy \(\left(x,y\right)\in\left\{\left(0;-4\right);\left(0;0\right);\left(4;-4\right);\left(4;0\right)\right\}\)
Giải hệ phương trình sau:
\(\left\{{}\begin{matrix}x^2=y^3-4y^2+8y\\y^2=x^3-4x^2+8x\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x^2=y^3-4y^2+8y\\x^3-4x^2+8x=y^2\end{matrix}\right.\) \(\Rightarrow x^3-3x^2+8x=y^3-3y^2+8y\) (1)
Xét hàm
\(f\left(t\right)=t^3-3t^2+8t\Rightarrow f'\left(t\right)=3t^2-6t+8=3\left(t-1\right)^2+5>0\)
\(\Rightarrow f\left(t\right)\) đồng biến trên R \(\Rightarrow f\left(t_1\right)=f\left(t_2\right)\Leftrightarrow t_1=t_2\)
\(\Rightarrow\left(1\right)\Leftrightarrow x=y\)
Thay vào pt đầu:
\(x^3-5x^2+8x=0\Leftrightarrow x\left(x^2-5x+8\right)=0\Rightarrow x=y=0\)
Giải hệ phương trình \(\hept{\begin{cases}x^3+8y^3-4xy^2\\2x^4+8y^4-2x=y\end{cases}=0}\)
Giải các hệ phương trình sau bằng phương pháp thế:
a)\(\left\{{}\begin{matrix}3x-2y=11\\4x-5y=3\end{matrix}\right.\)
b)\(\left\{{}\begin{matrix}\dfrac{x}{2}-\dfrac{y}{3}=1\\5x-8y=3\end{matrix}\right.\)
c)\(\left\{{}\begin{matrix}3x+5y=1\\2x-y=-8\end{matrix}\right.\)
d)\(\left\{{}\begin{matrix}\dfrac{x}{y}=\dfrac{2}{3}\\x+y-10=0\end{matrix}\right.\)
a: \(\left\{{}\begin{matrix}3x-2y=11\\4x-5y=3\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}3x=11+2y\\4x-5y=3\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=\dfrac{2}{3}y+\dfrac{11}{3}\\4\left(\dfrac{2}{3}y+\dfrac{11}{3}\right)-5y=3\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=\dfrac{2}{3}y+\dfrac{11}{3}\\\dfrac{8}{3}y+\dfrac{44}{3}-5y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2}{3}y+\dfrac{11}{3}\\-\dfrac{7}{3}y=3-\dfrac{44}{3}=-\dfrac{35}{3}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=5\\x=\dfrac{2}{3}\cdot5+\dfrac{11}{3}=\dfrac{10}{3}+\dfrac{11}{3}=\dfrac{21}{3}=7\end{matrix}\right.\)
b: \(\left\{{}\begin{matrix}\dfrac{x}{2}-\dfrac{y}{3}=1\\5x-8y=3\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\dfrac{x}{2}=\dfrac{y}{3}+1\\5x-8y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2}{3}y+2\\5\left(\dfrac{2}{3}y+2\right)-8y=3\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=\dfrac{2}{3}y+2\\\dfrac{10}{3}y+10-8y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-\dfrac{14}{3}y=3-10=-7\\x=\dfrac{2}{3}y+2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=7:\dfrac{14}{3}=7\cdot\dfrac{3}{14}=\dfrac{3}{2}\\x=\dfrac{2}{3}\cdot\dfrac{3}{2}+2=3\end{matrix}\right.\)
c: \(\left\{{}\begin{matrix}3x+5y=1\\2x-y=-8\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=2x+8\\3x+5\left(2x+8\right)=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=2x+8\\3x+10x+40=1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=2x+8\\13x=-39\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=-3\\y=2\cdot\left(-3\right)+8=8-6=2\end{matrix}\right.\)
d: \(\left\{{}\begin{matrix}\dfrac{x}{y}=\dfrac{2}{3}\\x+y-10=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=\dfrac{2}{3}y\\x+y=10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{2}{3}y+y=10\\x=\dfrac{2}{3}y\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\dfrac{5}{3}y=10\\x=\dfrac{2}{3}y\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=6\\x=\dfrac{2}{3}\cdot6=4\end{matrix}\right.\)
giải hệ phương trình : \(\left\{{}\begin{matrix}x-4y+3\sqrt{y}=\sqrt{2x+y}\\\sqrt{8y-1}+x^2-12y+1=0\end{matrix}\right.\)