Những câu hỏi liên quan
Rosie
Xem chi tiết
Trần Tuấn Hoàng
Xem chi tiết
Lê Phương Mai
6 tháng 2 2022 lúc 10:54

Refer:

a² + b² + c² + d² + e² ≥ a(b + c + d + e)

Ta có: a² + b² + c² + d² + e²= (a²/4 + b²) + (a²/4 + c²) + (a²/4 + d²) + (a²/4 + e²)

Lại có: (a/2 - b)² ≥ 0 <=> a²/4 - ab + b² ≥ 0 <=> a²/4 + b² ≥ ab

Tương tự ta có:. a²/4 + c² ≥ ac.

a²/4 + d² ≥ ad.

a²/4 + e² ≥ ae

--> (a²/4 + b²) + (a²/4 + c²) + (a²/4 + d²) + (a²/4 + e²) ≥ ab + ac + ad + ae

<=> a² + b² + c² + d² + e² ≥ a(b + c + d + e)

=> đpcm.

Dấu " = " xảy ra <=> a/2 = b = c = d = e.

Trần Khánh Linh
Xem chi tiết
Phía sau một cô gái
17 tháng 7 2021 lúc 10:10

       \(ac+bd=0\)

\(=\) \(abc^2+abd^2+cda^2+cdb^2\)

\(=\)  \(ac\left(bc+ad\right)+bd\left(ad+bc\right)\)

\(=\)  \(\left(bc+ad\right)\left(ac+bd\right)=0\) \([\) vì ac+bd = 0 \(]\)

Hà Nam Khánh
Xem chi tiết
Nguyễn Đức Trí
20 tháng 8 2023 lúc 14:23

Ta có :

\(\left(a-b-c\right)^2=a^2+b^2+c^2-2ab-2bc-2ac\)

mà theo đề bài \(a^2+b^2+c^2-ab-bc-ac=0\)

\(\Rightarrow\left(a-b-c\right)^2=-ab-bc-ac=0\)

\(\Rightarrow\left(a-b-c\right)^2=-\left(ab+bc+ac\right)=0\)

mà \(-\left(ab+bc+ac\right)\le0\)

\(\Rightarrow a=b=c=0\)

\(\Rightarrow dpcm\)

vũ thúy hằng
Xem chi tiết
Vương Quốc Anh
7 tháng 12 2015 lúc 14:27

Bạn đánh lại đề đi, Để ghi dấu mũ bạn ấn nút "x2" trên thanh công cụ, sau khi bạn gõ xong dấu mũ rồi bạn ấn lại nó để đưa về trạng thái thường

Vương Quốc Anh
7 tháng 12 2015 lúc 13:59

\(\frac{\left(a+b\right)2}{\left(c+d\right)2}=\frac{2a+2b}{2c+2d}\)

Vậy \(\frac{\left(a+b\right)2}{\left(c+d\right)2}=\frac{2a+2b}{2c+2d}\)

Đặng Gia Ân
Xem chi tiết
Phạm Ngọc Bích
17 tháng 1 2022 lúc 16:23
Ngu kkkkkkkkkkkkkkkkkkkkkkkkkkkkkk
Khách vãng lai đã xóa
Tôi tên là moi
Xem chi tiết
Lê Đông Thành
Xem chi tiết
Lê Đông Thành
15 tháng 10 2021 lúc 11:08

Ai giúp gấp nhé:D

 

Nguyễn Bảo Anh
15 tháng 10 2021 lúc 11:16

Ta có : a2 + b2 = c2 + d2

a2 + b2 + c2 + d2 = 2 ( a2 + b2 ) 2 nên là hợp số

Ta có : a2 + b2 + c2 + d2 - ( a + b + c + d ) 

= a ( a - 1 ) + b ( b - 1 ) + c ( c - 1 ) + d ( d - 1 ) 2

a + b + c + d 2 nên cũng là hợp số

OH-YEAH^^
15 tháng 10 2021 lúc 11:17

Ta có: \(a^2+b^2=c^2+d^2\)

\(\Rightarrow a^2+b^2+a^2+b^2=a^2+b^2+c^2+d^2\)

\(\Rightarrow2\left(a^2+b^2\right)=a^2+b^2+c^2+d^2\)

\(\Rightarrow a^2+b^2+c^2+d^2\) là chẵn

Xét hiệu: \(a^2+b^2+c^2+d^2-a-b-c-d=a\left(a-1\right)+b\left(b-1\right)+c\left(c-1\right)+d\left(d-1\right)\)

Mà tích 2 số TN liên tiếp là chẵn

⇒ Tổng a+b+c+d là chẵn

Vì \(a+b+c+d>2\) với mọi số TN a,b,c,d khác 0

⇒ a+b+c+d là hợp số

Ngo Tuyen
Xem chi tiết
ILoveMath
12 tháng 1 2022 lúc 21:01

\(\dfrac{a}{b}=\dfrac{b}{c}\Rightarrow ac=b^2\)

\(\dfrac{a^2+b^2}{b^2+c^2}=\dfrac{a^2+ac}{ac+c^2}=\dfrac{a\left(a+c\right)}{c\left(a+c\right)}=\dfrac{a}{c}\)

Nguyễn Lê Phước Thịnh
12 tháng 1 2022 lúc 21:02

Đề thiếu rồi bạn

Bùi Doãn Nhật Quang
Xem chi tiết
ILoveMath
27 tháng 1 2022 lúc 10:18

\(1,\left(ac+bd\right)^2+\left(ad-bc\right)^2\\ =a^2c^2+2abcd+b^2d^2+a^2d^2-2abcd+b^2c^2\\ =a^2c^2+b^2d^2+a^2d^2+b^2c^2\\ =\left(a^2c^2+a^2d^2\right)+\left(b^2d^2+b^2c^2\right)\\ =a^2\left(c^2+d^2\right)+b^2\left(c^2+d^2\right)\\ =\left(a^2+b^2\right)\left(c^2+d^2\right)\)

2, \(\left(a^2+b^2\right)\left(c^2+d^2\right)\ge\left(ac+bd\right)^2\)

\(\Leftrightarrow a^2c^2+b^2c^2+a^2d^2+b^2d^2\ge a^2c^2+2abcd+b^2d^2\)

\(\Leftrightarrow b^2c^2-2abcd+a^2d^2\ge0\)

\(\Leftrightarrow\left(bc-ad\right)^2\ge0\)

Dấu "=" xảy ra \(\Leftrightarrow bc=ad\Leftrightarrow\dfrac{a}{b}=\dfrac{c}{d}\)

Thanh Quân
27 tháng 1 2022 lúc 10:18

\(1\)

⇔ \(\left(ac\right)^2+2abcd+\left(bd\right)^2+\left(ad\right)^2-2abcd+\left(bc\right)^2=\left(a^2+b^2\right)\left(c^2+d^2\right)\)

\(a^2\left(c^2+d^2\right)+b^2\left(c^2+d^2\right)=\left(a^2+b^2\right)\left(c^2+d^2\right)\)

\(\left(a^2+b^2\right)\left(c^2+d^2\right)=\left(a^2+b^2\right)\left(c^2+d^2\right)\) ⇒ \(\left(dpcm\right)\)

\(2\)/

\(\left(ac\right)^2+\left(ad\right)^2+\left(bc\right)^2+\left(bd\right)^2\ge\left(ac\right)^2+2abcd+\left(bd\right)^2\)

\(\left(ad\right)^2-2abcd+\left(bc\right)^2\ge0\)

\(\left(ad-bc\right)^2\ge0\left(đúng\right)\)

Hoàng Việt Tân
27 tháng 1 2022 lúc 10:36

1/ \((ac + bd)^2 + (ad - bc)^2 = (ac)^2 + (bd)^2 + 2(ac)^2 (bd)^2 + (ad)^2 + (bc)^2 - 2(ad)^2 (bc)^2 \)

                                          \(= (ac)^2 + (bd)^2 + 2(acbd)^2 + (ad)^2 + (bc)^2 - 2(adbc)^2 \)

                                          \(= (ac)^2 + (bd)^2 + (ad)^2 + (bc)^2\)

                                          \(= a^2 c^2 + b^2 c^2 + a^2 d^2 + b^2 d^2\)

                                          \(= (a^2 + b^2)c^2 + (a^2 + b^2)d^2\)

                                          \(= (a^2 + b^2)(c^2 + d^2)\)

➤ \((ac + bd)^2 + (ad - bc)^2 = (a^2 + b^2)(c^2 + d^2)\)

2/ \((a^2 + b^2)(c^2 + d^2) ≥ (ac + bd)^2 \) 

↔ \((ac)^2 + (bc)^2 + (ad)^2 + (bd)^2 ≥ (ac)^2 + (bd)^2 + 2(ac)(bd)\)

\( (bc)^2 + (ad)^2 ≥ 2(acbd)\)

\( (bc)^2 + (ad)^2 - 2(bcad) ≥ 0\)

↔ \( (bc - ad)^2 ≥ 0 \) với mọi a,b,c và d

➤ \((a^2 + b^2)(c^2 + d^2) ≥ (ac + bd)^2 \) với mọi a,b,c,d