phân tích
6xy-5x+5y-\(3x^2-3y^2\)
Phân tích đa thức thành nhân tử:
a) \(7x^3y^2+14x^2y^3+7xy^4\)
b) \(x^2-xy+5x-5y\)
c) \(3x^2-6xy-12+3y^2\)
`a)7x^3y^2+14x^2y^3+7xy^4`
`=7xy^2(x^2+2xy+y^2)`
`=7xy^2(x+y)^2`
______________________________________________
`b)x^2-xy+5x-5y`
`=x(x-y)+5(x-y)`
`=(x-y)(x+5)`
______________________________________________
`c)3x^2-6xy-12+3y^2`
`=3(x^2-2xy-4+y^2)`
`=3[(x-y)^2-4]`
`=3(x-y-2)(x-y+2)`
a)7x3y2+14x2y3+7xy4
=7xy2(x2+2xy+y2)
=7xy2(x+y)2
b)x2-xy + 5x - 5y
=x(x-y) + 5(x-y)
=(x-y) (x+5)
phân tích thành nhân tử
b. x^2+2xy+y^2-16
c. 3x^2+5x-3xy-5y
d. 4x^2-6x^3y-2x^2+8x
e. x^2-4-2xy+y^2
k. x^2-y^2-z^2-2yz
m. 6xy+5x-5y-3x^2-3y^2
b)x2+2xy+y2-16=(x+y)2-42=(x+y+4)(x+y-4)
c)3x2+5x-3xy-5y=x(3x+5)-y(3x+5)=(3x+5)(x-y)
d)4x2-6x3y-2x2+8x=2x(2x-3x2y-x+4)
e)x2-4-2xy+y2=(x2-2xy+y2)-4=(x-y)2-22=(x-y-2)(x-y+2)
k)x2-y2-z2-2yz=x2-(y+z)2=(x-y-z)(x+y+z)
m)6xy+5x-5y-3x2-3y2=3(x2-2xy+y2)+5(x-y)=3(x-y)2+5(x-y)=(x-y)(3x-3y+5)
b. (x^2+2xy+y^2)-16 =(x+y)^2-16=(x+y+4)(x+y-4)
Phân tích thành nhân tử
\(x^2 -y^2 +5x-5y\)
\(x^2 -16y^2 +4x+4\)
\(3x^2 +6xy+3y^2 -12\)
\(4x^3 +4x^2 +x\)
\(x^2-y^2+5x-5y\)
\(=\left(x-y\right)\left(x+y\right)+5\left(x-y\right)\)
\(=\left(x-y\right)\left(x+y+5\right)\)
\(---\)
\(x^2-16y^2+4x+4\)
\(=\left(x^2+4x+4\right)-16y^2\)
\(=\left(x+2\right)^2-\left(4y\right)^2\)
\(=\left(x+2-4y\right)\left(x+2+4y\right)\)
\(=\left(x-4y+2\right)\left(x+4y+2\right)\)
\(---\)
\(3x^2+6xy+3y^2-12\)
\(=3\left(x^2+2xy+y^2-4\right)\)
\(=3\left[\left(x+y\right)^2-2^2\right]\)
\(=3\left(x+y-2\right)\left(x+y+2\right)\)
\(---\)
\(4x^3+4x^2+x\)
\(=x\left(4x^2+4x+1\right)\)
\(=x\left(2x+1\right)^2\)
phân tích đa thức thành nhân tử
2)3x^2-6xy+3y^2
3)3(x-y)-5y(y-x)
5)(x+y)^3-(x-y)^3
6)3x^2-5x+2
giúp mình với ạ
2)3x2-6xy+3y2=3(x2-2xy+y2)=3(x-y)2
3)3(x-y)-5y(y-x)=3(x-y)+5y(x-y)=(x-y)(3+5y)
5)(x+y)3-(x-y)3=[(x+y)-(x-y)][(x+y)2+(x+y)(x-y)+(x-y)2]=(x+y-x+y)(x2+2xy+y2+x2-y2+x2-2xy+y2)=2y(3x2+y2)
6)3x2-5x+2=3x2-2x-3x+2=(3x2-3x)-(2x-2)=3x(x-1)-2(x-1)=(x-1)(3x-2)
Phân tích đa thức thành phân tử:
a,xz+yz-5(x+y)
b,3x^2-3xy-5x+5y
c,x^2+6x-y^2-3z^2
d,3x^2+6xy+3y^2-3z^2
a.\(xz+yz-5\left(x+y\right)\)
\(=z\left(x+y\right)-5\left(x+y\right)\)
\(=\left(x+y\right)\left(z-5\right)\)
b.\(3x^2-3xy-5x+5y\)
\(=3x\left(x-y\right)-5\left(x-y\right)\)
\(=\left(x-y\right)\left(3x-5\right)\)
c.\(x^2+6x-y^2-3z^2\)???Sai đề bài ...?
d.\(3x^2+6xy+3y^2-3z^2\)
\(=3\left(x^2+2xy+y^2-z^2\right)\)
\(=3\left[\left(x+y\right)^2-z^2\right]\)'
\(=3\left(x+y-z\right)\left(x+y+z\right)\)
Trả lời:
a, xz + yz - 5 ( x + y )
= ( xz + yz ) - 5 ( x + y )
= z ( x + y ) - 5 ( x + y )
= ( x + y ) ( z - 5 )
b, 3x2 - 3xy - 5x + 5y
= ( 3x2 - 3xy ) - ( 5x - 5y )
= 3x ( x - y ) - 5 ( x - y )
= ( x - y ) ( 3x - 5 )
c, x2 + 6x - y2 - 3z2
= - ( 3x2 - x2 + y2 - 6x )
d, 3x2 + 6xy + 3y2 - 3z2
= 3 ( x2 + 2xy + y2 - x2 )
= 3 [ ( x2 + 2xy + y2 ) - z2 ]
= 3 [ ( x + y )2 - z2 ]
= 3 ( x + y - z ) ( x + y + z )
Phân tích các đa thức sau thành nhân tử a.3x²-6x+9x². B.3x²+5y-3xs-5x C.3y²-3z²+3x²+6xy. D.x²-25-2xy+y2
\(a,3x^2-6x+9x^2=12x^2-6x=6x\left(2x-1\right)\\ b,3x^2+5y-3xy-5x=\left(3x^2-3xy\right)-\left(5x-5y\right)=3x\left(x-y\right)-5\left(x-y\right)=\left(x-y\right)\left(3x-5\right)\\ c,3y^2-3z^2+3x^2+6xyz=3\left(y^2-z^2+x^2+2xyz\right)\\ d,x^2-25-2xy+y^2=\left(x-y\right)^2-5^2=\left(x-y-5\right)\left(x-y+5\right)\)
6xy+5x-5y-3x^2-3y^2
bài 2: Phân tích các đa thức sau thành nhân tử
a. 3x^2+5y-3xy-5x
b. 3y^2-3z^2+3x^2+6xy
c.x^2-25-2xy+y^2
d.5x^2-10xy+5y^2-20z^2
e. x^2-5x+5y-y^2
f. 3x^2-6xy+3y^2-12z^2
a) Ta có: \(3x^2+5y-3xy-5x\)
\(=3x\left(x-y\right)-5\left(x-y\right)\)
\(=\left(x-y\right)\left(3x-5\right)\)
b) Ta có: \(3y^2-3z^2+3x^2+6xy\)
\(=3\left(y^2-z^2+x^2+2xy\right)\)
\(=3\left[\left(x+y\right)^2-z^2\right]\)
\(=3\left(x+y-z\right)\left(x+y+z\right)\)
c) Ta có: \(x^2-25-2xy+y^2\)
\(=\left(x-y\right)^2-5^2\)
\(=\left(x-y-5\right)\left(x-y+5\right)\)
d) Ta có: \(5x^2-10xy+5y^2-20z^2\)
\(=5\left(x^2-2xy+y^2-4z^2\right)\)
\(=5\left[\left(x-y\right)^2-\left(2z\right)^2\right]\)
\(=5\left(x-y-2z\right)\left(x-y+2z\right)\)
e) Ta có: \(x^2-5x+5y-y^2\)
\(=\left(x-y\right)\left(x+y\right)-5\left(x-y\right)\)
\(=\left(x-y\right)\left(x+y-5\right)\)
f) Ta có: \(3x^2-6xy+3y^2-12z^2\)
\(=3\left(x^2-2xy+y^2-4z^2\right)\)
\(=3\left[\left(x-y\right)^2-\left(2z\right)^2\right]\)
\(=3\left(x-y-2z\right)\left(x-y+2z\right)\)
phân tích đa thức sau thành nhân tử
k, 2x mũ 2 - x - 6xy + 3y
l, x mũ 2 - xy + 5x - 5y
m, (( a mũ 2 + 4 ) mũ 2 - 16a mũ 2
n, x mũ 2 y mũ 2 + 1 - x mũ 2 - y mũ 2
q, 3x mũ 2 - 6xy + 3y mũ 2 - 12z mũ 2
k) = x( 2x - 1 ) - 3y( 2x - 1 ) = ( 2x - 1 )( x - 3y )
l) = x( x - y ) + 5( x - y ) = ( x - y )( x + 5 )
m) = ( a2 - 4a + 4 )( a2 + 4a + 4 ) = ( a - 2 )2( a + 2 )2
n) = y2( x2 - 1 ) - ( x2 - 1 ) = ( x - 1 )( x + 1 )( y - 1 )( y + 1 )
q) = 3[ ( x - y )2 - 4z2 ] = 3( x - y - 2z )( x - y + 2z )
Phân tích đa thức thành nhân tử:
\(a,x^2-2xy+y^2-z^2\)
\(b,3x^2+6xy+3y^2-3z^2\)
\(c,3x^2-3xy-5x+5y\)
\(x^2-2xy+y^2-z^2=\left(x-y\right)^2-z^2=\left(x-y-z\right)\left(x-y+z\right)\)
\(3x^2+6xy+3y^2-3z^2=3\left(x^2+2xy+y^2-z^2\right)=3.\left[\left(x+y\right)^2-z^2\right]=3.\left(x+y-z\right)\left(x+y+z\right)\)
\(3x^2-3xy-5x+5y=3x\left(x-y\right)-5\left(x-y\right)=\left(x-y\right)\left(3x-5\right)\)