Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hoàng Thanh Hà
Xem chi tiết
Trần Thanh Phương
22 tháng 8 2019 lúc 20:50

\(x^2+mx+m+3=0\)

\(\Delta=m^2-4\cdot\left(m+3\right)\)

\(=m^2-4m-12\)

\(=\left(m-6\right)\left(m+2\right)\ge0\)

\(\Leftrightarrow\left[{}\begin{matrix}m\le-2\\m\ge6\end{matrix}\right.\)

Theo định lý Viet ta có :

\(\left\{{}\begin{matrix}x_1+x_2=\frac{-m}{2}\\x_1x_2=\frac{m+3}{2}\end{matrix}\right.\)

Từ đó ta có hệ :

\(\left\{{}\begin{matrix}x_1+x_2=\frac{-m}{2}\\x_1x_2=\frac{m+3}{2}\\2x_1+3x_2=5\end{matrix}\right.\)

Pt cuối \(\Leftrightarrow2\left(x_1+x_2\right)+x_2=5\)

\(\Leftrightarrow-m+x_2=5\)

\(\Leftrightarrow x_2=m+5\)(1)

Thay lên pt đầu: \(m+5+x_1=\frac{-m}{2}\)

\(\Leftrightarrow x_1=\frac{-m}{2}-\frac{2\left(m+5\right)}{2}\)

\(\Leftrightarrow x_1=\frac{-m-2m-10}{2}=\frac{-3m-10}{2}\)(2)

Thay (1) và (2) vào pt giữa :

\(\left(m+5\right)\cdot\frac{-3m-10}{2}=\frac{m+3}{2}\)

\(\Leftrightarrow m=\frac{-13\pm\sqrt{10}}{3}\)( thỏa )

Vậy...

Is that true .-.

Lê Ngọc Huyền
Xem chi tiết
Nguyễn Lê Phước Thịnh
20 tháng 3 2021 lúc 13:39

a) Ta có: \(\Delta=\left(-1\right)^2-4\cdot1\cdot\left(-2m-10\right)\)

\(=1+4\left(2m+10\right)\)

\(=8m+41\)

Để phương trình (1) có nghiệm thì \(8m+41\ge0\)

hay \(m\ge-\dfrac{41}{8}\)

Phương Thảo
Xem chi tiết
Nguyễn Lê Phước Thịnh
20 tháng 2 2023 lúc 21:58

\(\text{Δ}=\left(2m+1\right)^2-4\left(m^2+m\right)\)

=4m^2+4m+1-4m^2-4m=1

=>PT luôn có hai nghiệm phân biệt

x1+x2>2 và x1x2>1

=>2m+1>2 và m^2+m>1

=>\(m>\dfrac{-1+\sqrt{5}}{2}\)

nguyen ngoc son
Xem chi tiết
Nguyễn Huy Tú
20 tháng 2 2022 lúc 15:47

\(\Delta'=\left(m-1\right)^2-\left(2m-3\right)=m^2-2m+1-2m+3=m^2-4m+4=\left(m-2\right)^2\ge0\forall m\)

Vậy pt luôn có 2 nghiệm x1;x2

Theo Vi et \(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)\\x_1x_2=2m-3\end{matrix}\right.\)

Ta có \(\left(x_1+x_2\right)^2-4x_1x_2=2\)

Thay vào ta đc \(4\left(m-1\right)^2-4\left(2m-3\right)=2\Leftrightarrow4m^2-8m+4-8m+12=2\)

\(\Leftrightarrow4m^2-16m+14=0\Leftrightarrow m=\dfrac{4\pm\sqrt{2}}{2}\)

Hường Nguyệt
Xem chi tiết
Nguyễn Huy Tú
26 tháng 2 2022 lúc 19:30

Để pt có 2 nghiệm x1;x2 

\(\Delta'=\left(m+2\right)^2-\left(m+1\right)=m^2+4m+4-m-1=m^2+3m+3\ge0\)

Ta có : \(\left(x_1+x_2\right)\left[1-2\left(x_1+x_2\right)+1\right]=m^2\)

\(\Leftrightarrow2\left(m+2\right)\left[2-2.2\left(m+2\right)\right]=m^2\)

\(\Leftrightarrow m^2=2\left(m+2\right)\left(-6-4m\right)\Leftrightarrow m^2=-4\left(m+2\right)\left(3+2m\right)\)

\(\Leftrightarrow m^2=-4\left(2m^2+7m+6\right)\Leftrightarrow m^2+8m^2+28m+24=0\)

\(\Leftrightarrow9m^2+28m+24=0\)

\(\Delta'=196-24.9=196-216< 0\)

Vậy ko có gtri m tm 

 

do nguyen hai duy
Xem chi tiết
Khánh Ngọc
Xem chi tiết
Nguyễn Lê Phước Thịnh
9 tháng 5 2023 lúc 20:23

Δ=(2m+5)^2-4(-2m-6)

=4m^2+20m+25+8m+24

=4m^2+28m+49

=(2m+7)^2>=0

Để phương trình có hai nghiệm phân biệt thì 2m+7<>0

=>m<>-7/2

|x1|+|x2|=7

=>x1^2+x2^2+2|x1x2|=49

=>(x1+x2)^2-2x1x2+2|x1x2|=49

=>(2m+5)^2-2(-2m-6)+2|2m+6|=49

=>4m^2+20m+25+4m+12+2|2m+6|=49

=>4m^2+24m-12+4|m+3|=0

TH1: m>=-3

=>4m^2+24m-12+4m+12=0

=>4m^2+28m=0

=>m=0(nhận) hoặc m=-7(loại)

TH2: m<-3

=>4m^2+24m-12-4m-12=0

=>4m^2+20m-24=0

=>m^2+5m-6=0

=>m=-6(nhận) hoặc m=-1(loại)

Lê Anh Quân
Xem chi tiết
Vũ Hoàng
Xem chi tiết
Kiều Vũ Linh
16 tháng 5 2023 lúc 18:04

Bổ sung thêm cho bạn Song Thư:

∆ = b² - 4ac = [-(m + 3)]² - 4(2m + 2)

= m² + 6m + 9 - 8m - 8

= m² - 2m + 1

= (m - 1)² ≥ 0 với mọi m

Vậy phương trình luôn có hai nghiệm phân biệt

YangSu
16 tháng 5 2023 lúc 17:13

\(x^2-\left(m+3\right)x+2m+2=0\)

Theo Vi-ét, ta có :

\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=m+3\\x_1x_2=\dfrac{c}{a}=2m+2\end{matrix}\right.\)

Ta có : \(x_1^2+x_2^2=13\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2-13=0\)

\(\Leftrightarrow\left(m+3\right)^2-2\left(2m+2\right)-13=0\)

\(\Leftrightarrow\left(m^2+6m+9\right)-4m-4-13=0\)

\(\Leftrightarrow m^2+2m-8=0\)

\(\Leftrightarrow\left[{}\begin{matrix}m=2\\m=-4\end{matrix}\right.\)