Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Đinh Cẩm Tú
Xem chi tiết
ミ★ήɠọς τɾίếτ★彡
8 tháng 7 2021 lúc 14:37

a.

\(y=\sqrt{x+2}\Rightarrow y^2=\left(\sqrt{x+2}\right)^2\)

                    \(\Rightarrow y^2=x+2\)

                    \(\Rightarrow x=y^2-2\)

thay vào A ta có:\(A=x-2\sqrt{x+2}\)

\(\Rightarrow A=y^2-2y=y^2-2y-2\)

b.

\(A=x-2\sqrt{x+2}\)

Điều kiện:x+2≥0⇔x>-2

ta có:\(A=x-2\sqrt{x+2}\)

            \(=\left(x+2\right)-2\sqrt{x+2}.1+1-3\)

            \(=\left(\sqrt{x+12}-1\right)^2-3\)

vì \(\left(\sqrt{x+2}-1\right)^2\ge0\forall x\)

\(\Rightarrow\left(\sqrt{x+2}-1\right)^2-3\ge-3\forall x\)

vậy GTNN của A là-3

Quỳnh Lisa
8 tháng 7 2021 lúc 14:47

a/ y=\(\sqrt{x+2}\)\(y^2-2=x\)

⇒A=\(y^2-2-2y\)

b/ A=\(y^2-2y-2\)=\(\left(y^2-2y+1\right)-3\)=\(\left(y-1\right)^2-3\)≥ -3

\(A_{min}=-3\)

dấu = xảy ra khi y=1⇒x= -1

Đoàn Ngọc Ly
Xem chi tiết
Akai Haruma
16 tháng 8 2019 lúc 23:49

Lời giải:

a) Ta có:
\(y=\sqrt{x+2}(y\geq 0)\Rightarrow y^2=x+2\Rightarrow x=y^2-2\)

\(\Rightarrow A=x-2\sqrt{x+2}=y^2-2-2y\)

b)

\(A=y^2-2-2y=(y^2-2y+1)-3=(y-1)^2-3\)

Vì $(y-1)^2\geq 0$ với mọi $y\geq 0$ nên $A=(y-1)^2-3\geq -3$

Vậy GTNN của $A$ là $-3$ khi $y-1=0\Leftrightarrow y=1\Leftrightarrow x=-1$

Akai Haruma
16 tháng 8 2019 lúc 23:57

Lời giải:

a) Ta có:
\(y=\sqrt{x+2}(y\geq 0)\Rightarrow y^2=x+2\Rightarrow x=y^2-2\)

\(\Rightarrow A=x-2\sqrt{x+2}=y^2-2-2y\)

b)

\(A=y^2-2-2y=(y^2-2y+1)-3=(y-1)^2-3\)

Vì $(y-1)^2\geq 0$ với mọi $y\geq 0$ nên $A=(y-1)^2-3\geq -3$

Vậy GTNN của $A$ là $-3$ khi $y-1=0\Leftrightarrow y=1\Leftrightarrow x=-1$

công chúa xinh đẹp
Xem chi tiết
FL.Hermit
10 tháng 8 2020 lúc 14:56

a) 

Do: \(y=\sqrt{x+2}\)

<=> \(y^2=x+2\)

<=> \(x=y^2-2\)

Khi đó: \(A=y^2-2-2y\)

Vậy \(A=y^2-2y-2\)

Khách vãng lai đã xóa
FL.Hermit
10 tháng 8 2020 lúc 14:59

b) 

\(A=y^2-2y-2\left(cmt\right)\)

\(A=\left(y^2-2y+1\right)-3\)

\(A=\left(y-1\right)^2-3\)

Do \(\left(y-1\right)^2\ge0\forall y\)

=> \(\left(y-1\right)^2-3\ge-3\)

=> \(A\ge-3\)

Vậy A MIN = -3 <=> \(\left(y-1\right)^2=0\)

<=> \(y=1\)

Do: \(y=\sqrt{x+2}\)

<=> \(\sqrt{x+2}=1\)

<=> \(x+2=1\)

<=> \(x=-1\)

Khách vãng lai đã xóa
Mengg
Xem chi tiết
Hồng Phúc
27 tháng 1 2021 lúc 19:14

Áp dụng BĐT BSC và BĐT \(2\left(x^2+y^2\right)\ge\left(x+y\right)^2\):

\(A=x\sqrt{y+1}+y\sqrt{x+1}\)

\(\Rightarrow A^2=\left(x\sqrt{y+1}+y\sqrt{x+1}\right)^2\)

\(\le\left(x^2+y^2\right)\left(x+y+2\right)\)

\(\le\left(x^2+y^2\right)\left[\sqrt{2\left(x^2+y^2\right)}+2\right]=\sqrt{2}+2\)

\(\Rightarrow-\sqrt{\sqrt{2}+2}\le A\le\sqrt{\sqrt{2}+2}\)

\(\Rightarrow minA=\sqrt{\sqrt{2}+2}\Leftrightarrow x=y=-\dfrac{1}{\sqrt{2}}\)

Hà Đức Duy
Xem chi tiết
Nguyễn Lê Phước Thịnh
7 tháng 9 2021 lúc 21:09

Bài 5: 

a: Thay \(x=4+2\sqrt{3}\) vào E, ta được:

\(E=\dfrac{\sqrt{3}+1-1}{\sqrt{3}+1-3}=\dfrac{\sqrt{3}}{\sqrt{3}-2}=-3-2\sqrt{3}\)

b: Để E<1 thì E-1<0

\(\Leftrightarrow\dfrac{\sqrt{x}-1-\sqrt{x}+3}{\sqrt{x}-3}< 0\)

\(\Leftrightarrow\sqrt{x}-3< 0\)

hay x<9

Kết hợp ĐKXĐ, ta được: \(\left\{{}\begin{matrix}0\le x< 9\\x\ne1\end{matrix}\right.\)

c: Để E nguyên thì \(4⋮\sqrt{x}-3\)

\(\Leftrightarrow\sqrt{x}-3\in\left\{-2;1;2;4\right\}\)

\(\Leftrightarrow\sqrt{x}\in\left\{4;5;7\right\}\)

hay \(x\in\left\{16;25;49\right\}\)

Nhan Thanh
7 tháng 9 2021 lúc 21:17

Câu 2:
a) Ta có \(x=4-2\sqrt{3}\Rightarrow\sqrt{x}=\sqrt{\left(\sqrt{3}-2\right)^2}=\sqrt{3}-2\)

Thay \(x=\sqrt{3}-1\) vào \(B\), ta được

\(B=\dfrac{\sqrt{3}-1-2}{\sqrt{3}-1+1}=\dfrac{\sqrt{3}-3}{\sqrt{3}}=1-\sqrt{3}\)

b) Để \(B\) âm thì \(\dfrac{\sqrt{x}-2}{\sqrt{x}+1}< 0\) mà \(\sqrt{x}+1\ge1>0\forall x\) \(\Rightarrow\sqrt{x}-2< 0\Rightarrow\sqrt{x}< 2\Rightarrow x< 4\)

c) Ta có \(B=\dfrac{\sqrt{x}-2}{\sqrt{x}+1}=1-\dfrac{3}{\sqrt{x}+1}\)

Với mọi \(x\ge0\) thì \(\sqrt{x}\ge0\Rightarrow\sqrt{x}+1\ge1\Rightarrow\dfrac{3}{\sqrt{x}+1}\le3\Rightarrow B=1-\dfrac{3}{\sqrt{x}+1}\ge-2\)

Dấu "=" xảy ra khi \(\sqrt{x}+1=1\Leftrightarrow x=0\)

Vậy \(B_{min}=-2\) khi \(x=0\)

Đệ Ngô
Xem chi tiết

a, Ta có y2=x+2

=> A= y2-2-2y

b, A=y2-2y-2=(y2-2y+1)-3=(y-1)2-3\(\ge\)-3

Dấu "=" xảy ra khi y=1=> \(\sqrt{x+2}=1\Leftrightarrow x=-1\)

Vậy min A=-3 khi x=-1

Đệ Ngô
8 tháng 6 2019 lúc 16:39

khi x=1 chứ bạn

Tuan Mai Thi
Xem chi tiết
Phạm Ngọc Thạch
9 tháng 6 2017 lúc 20:55

\(A=\sqrt{x^2+\frac{1}{y^2}}+\sqrt{y^2+\frac{1}{x^2}}\ge\sqrt{\frac{2x}{y}}+\sqrt{\frac{2y}{x}}\ge2\sqrt{\frac{\sqrt{2x}}{\sqrt{y}}.\frac{\sqrt{2y}}{\sqrt{x}}}=2\sqrt{2}\) (Cô si 2 lần)

Vậy min A = \(2\sqrt{2}\). Dấu bằng "=" ra khi và chỉ khi x=y= -1 hoặc x=y=1
 

....
Xem chi tiết
missing you =
2 tháng 7 2021 lúc 17:24

b, đk: \(x\ge1,y\ge2,z\ge3\)

\(=>B=\dfrac{\sqrt{x-1}}{x}+\dfrac{\sqrt{y-2}}{y}+\dfrac{\sqrt{z-3}}{z}\)

đặt \(\left\{{}\begin{matrix}\sqrt{x-1}=a\\\sqrt{y-2}=b\\\sqrt{z-3}=c\end{matrix}\right.\)\(=>\left\{{}\begin{matrix}x=a^2+1\\y=b^2+1\\z=c^2+1\end{matrix}\right.\)\(=>a\ge0,b\ge0,c\ge0\)

B trở thành \(\dfrac{a}{a^2+1}+\dfrac{b}{b^2+1}+\dfrac{c}{c^2+1}\)

\(=\dfrac{a^{ }}{a^2+1}+\dfrac{a^2+1}{4}+\dfrac{b}{b^2+1}+\dfrac{b^2+1}{4}+\dfrac{c}{c^2+1}+\dfrac{c^2+1}{4}\)

\(-\left(\dfrac{a^2+b^2+c^2+3}{4}\right)\ge\sqrt{a}+\sqrt{b}+\sqrt{c}-\dfrac{a^2+b^2+c^2}{4}\)\(=0\)

dấu"=" xảy ra<=>\(a=0,b=0,c=0< =>x=1,y=2,z=3\)

 

Nguyễn Việt Lâm
2 tháng 7 2021 lúc 17:31

Chắc bạn ghi nhầm đề, tìm GTLN mới đúng, chứ GTNN của các biểu thức này đều hiển nhiên bằng 0

\(A=\dfrac{3.\sqrt{x-9}}{15x}\le\dfrac{3^2+x-9}{30x}=\dfrac{1}{30}\)

\(A_{max}=\dfrac{1}{30}\) khi \(x=18\)

\(B=\dfrac{\sqrt{x-1}}{x}+\dfrac{\sqrt{y-2}}{y}+\dfrac{\sqrt{z-3}}{z}=\dfrac{1.\sqrt{x-1}}{x}+\dfrac{\sqrt{2}.\sqrt{y-2}}{\sqrt{2}y}+\dfrac{\sqrt{3}.\sqrt{z-3}}{\sqrt{3}z}\)

\(B\le\dfrac{1+x-1}{2x}+\dfrac{2+y-2}{2\sqrt{2}y}+\dfrac{3+z-3}{2\sqrt{3}z}=\dfrac{1}{2}+\dfrac{1}{2\sqrt{2}}+\dfrac{1}{2\sqrt{3}}\)

Dấu "=" xảy ra khi \(\left(x;y;z\right)=\left(2;4;6\right)\)

....
3 tháng 7 2021 lúc 15:56

đề bài là tìm gt lớn nhất nhé mọi người,tớ ghi nhầm

Lê Thụy Sĩ
Xem chi tiết