Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Shamidoli Nako
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
21 tháng 9 2023 lúc 15:59

a)     Phương trình: \({x^2} - 3x + 2 = 0\,\,\,\left( 1 \right)\)

Ta có: \(\Delta  = 9 - 4.2 = 1 > 0\)

Phương trình (1) có hai nghiệm \(\left\{ \begin{array}{l}{x_1} = \frac{{3 + 1}}{{2.1}} = 2\\{x_1} = \frac{{3 - 1}}{{2.1}} = 1\end{array} \right.\) => \({S_1} = \left\{ {1;2} \right\}\)

Phương trình: \(\left( {x - 1} \right)\left( {x - 2} \right) = 0\,\,\,\left( 2 \right)\)\( \Leftrightarrow \left[ \begin{array}{l}x = 1\\x = 2\end{array} \right.\) => \({S_2} = \left\{ {1;2} \right\}\)

b)     Hai tập \({S_1};{S_2}\) có bằng nhau

Hán Bình Nguyên
Xem chi tiết
Ngô Thành Chung
Xem chi tiết
Nguyễn Việt Lâm
15 tháng 12 2020 lúc 0:30

\(\sqrt{2-f\left(x\right)}=f\left(x\right)\Leftrightarrow\left\{{}\begin{matrix}f\left(x\right)\ge0\\f^2\left(x\right)+f\left(x\right)-2=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}f\left(x\right)=1\\f\left(x\right)=-2< 0\left(loại\right)\end{matrix}\right.\) 

\(\Rightarrow f\left(1\right)=f\left(2\right)=f\left(3\right)=1\)

\(\sqrt{2g\left(x\right)-1}+\sqrt[3]{3g\left(x\right)-2}=2.g\left(x\right)\)

\(VT=1.\sqrt{2g\left(x\right)-1}+1.1\sqrt[3]{3g\left(x\right)-2}\)

\(VT\le\dfrac{1}{2}\left(1+2g\left(x\right)-1\right)+\dfrac{1}{3}\left(1+1+3g\left(x\right)-2\right)\)

\(\Leftrightarrow VT\le2g\left(x\right)\)

Dấu "=" xảy ra khi và chỉ khi \(g\left(x\right)=1\)

\(\Rightarrow g\left(0\right)=g\left(3\right)=g\left(4\right)=g\left(5\right)=1\)

Để các căn thức xác định \(\Rightarrow\left\{{}\begin{matrix}f\left(x\right)-1\ge0\\g\left(x\right)-1\ge0\end{matrix}\right.\)

Ta có:

\(\sqrt{f\left(x\right)-1}+\sqrt{g\left(x\right)-1}+f\left(x\right).g\left(x\right)-f\left(x\right)-g\left(x\right)+1=0\)

\(\Leftrightarrow\sqrt{f\left(x\right)-1}+\sqrt{g\left(x\right)-1}+\left[f\left(x\right)-1\right]\left[g\left(x\right)-1\right]=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}f\left(x\right)=1\\g\left(x\right)=1\end{matrix}\right.\) \(\Leftrightarrow x=3\)

Vậy tập nghiệm của pt đã cho có đúng 1 phần tử

byun aegi park
Xem chi tiết
Nguyễn Lê Phước Thịnh
17 tháng 7 2022 lúc 20:18

A={0;1/2}

Tập con có hai phần tử của A là {0;1/2}

Buddy
Xem chi tiết
Hà Quang Minh
26 tháng 8 2023 lúc 15:04

Ta có: 

\(f'\left(x\right)=6x^2-2x\\ g'\left(x\right)=3x^2+x\)

Theo đề bài, ta có: 

\(f'\left(x\right)>g'\left(x\right)\\ \Leftrightarrow6x^2-2x>3x^2+x\\ \Leftrightarrow3x^2-3x>0\\ \Leftrightarrow3x\left(x-1\right)>0\\ \Leftrightarrow\left[{}\begin{matrix}x>1\\x< 0\end{matrix}\right.\)

Vậy tập nghiệm của bất phương trình là \(\left(-\infty;0\right)\cup\left(1;+\infty\right)\)

Chọn D.

Phong Trần
Xem chi tiết
NGUYỄN♥️LINH.._.
16 tháng 3 2022 lúc 19:14

A

Nguyễn Việt Lâm
16 tháng 3 2022 lúc 20:35

Do \(x^2-2x+4=\left(x-1\right)^2+3>0;\forall x\) nên BPT đã cho nghiệm đúng với mọi x khi và chỉ khi:

\(x^2-\left(3m+2\right)x+4>0;\forall x\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=1>0\\\Delta=\left(3m+2\right)^2-16< 0\end{matrix}\right.\)

\(\Leftrightarrow9m^2+12m-12< 0\)

\(\Rightarrow-2< m< \dfrac{2}{3}\)

\(\Rightarrow m=\left\{-1;0\right\}\) có 2 giá trị

Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
21 tháng 9 2023 lúc 23:07

Ta có:

Tập nghiệm của phương trình là \({S_1} = \left\{ 2 \right\}\)

\(\left( {x - 2} \right)\left( {{x^2} + 1} \right) = 0\; \Leftrightarrow x - 2 = 0\; \Leftrightarrow x = 2\)

Tập nghiệm của phương trình là \({S_2} = \left\{ 2 \right\}\)

Vậy tập nghiệm của 2 phương trình là tương đương.

Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
24 tháng 9 2023 lúc 10:58

a) \(A = \{ 3;2;1;0; - 1; - 2; - 3; -4; ...\} \)

Tập hợp B là tập các nghiệm nguyên của phương trình \(\left( {5x - 3{x^2}} \right)\left( {{x^2} + 2x - 3} \right) = 0\)

Ta có:

 \(\begin{array}{l}\left( {5x - 3{x^2}} \right)\left( {{x^2} + 2x - 3} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}5x - 3{x^2} = 0\\{x^2} + 2x - 3 = 0\end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}\left[ \begin{array}{l}x = 0\\x = \frac{5}{3}\end{array} \right.\\\left[ \begin{array}{l}x = 1\\x =  - 3\end{array} \right.\end{array} \right.\end{array}\)

Vì \(\frac{5}{3} \notin \mathbb Z\) nên \(B = \left\{ { - 3;0;1} \right\}\).

b) \(A \cap B = \left\{ {x \in A|x \in B} \right\} = \{  - 3;0;1\}  = B\)

\(A \cup B = \) {\(x \in A\) hoặc \(x \in B\)} \( = \{ 3;2;1;0; - 1; - 2; - 3;...\}  = A\)

\(A\,{\rm{\backslash }}\,B = \left\{ {x \in A|x \notin B} \right\} = \{ 3;2;1;0; - 1; - 2; - 3;...\} {\rm{\backslash }}\;\{  - 3;0;1\}  = \{ 3;2; - 1; - 2; - 4; - 5; - 6;...\} \)

Nguyễn Minh Quân
Xem chi tiết
2611
15 tháng 9 2023 lúc 20:59

`a)(2x^2-5x+3)(x^2-4x+3)=0`

`<=>[(2x^2-5x+3=0),(x^2-4x+3=0):}<=>[(x=3/2),(x=1),(x=3):}`

  `=>A={3/2;1;3}`

`b)(x^2-10x+21)(x^3-x)=0`

`<=>[(x^2-10x+21=0),(x^3-x=0):}<=>[(x=7),(x=3),(x=0),(x=+-1):}`

   `=>B={0;+-1;3;7}`

`c)(6x^2-7x+1)(x^2-5x+6)=0`

`<=>[(6x^2-7x+1=0),(x^2-5x+6=0):}<=>[(x=1),(x=1/6),(x=2),(x=3):}`

    `=>C={1;1/6;2;3}`

`d)2x^2-5x+3=0<=>[(x=1),(x=3/2):}`   Mà `x in Z`

    `=>D={1}`

`e){(x+3 < 4+2x),(5x-3 < 4x-1):}<=>{(x > -1),(x < 2):}<=>-1 < x < 2`

    Mà `x in N`

   `=>E={0;1}`

`f)|x+2| <= 1<=>-1 <= x+2 <= 1<=>-3 <= x <= -1`

      Mà `x in Z`

  `=>F={-3;-2;-1}`

`g)x < 5`  Mà `x in N`

   `=>G={0;1;2;3;4}`

`h)x^2+x+3=0` (Vô nghiệm)

   `=>H=\emptyset`.