cho a,b,c>0 và a+b+c=3
c/m \(\frac{a}{1+a^2}+\frac{b}{1+b^2}+\frac{c}{1+c^2}\le\frac{3}{2}\)
1) Cho a,b,c>0 tm a+b+c=3. Cmr \(\frac{1}{2+a^2+b^2}+\frac{1}{2+b^2+c^2}+\frac{1}{2+c^2+a^2}\le\frac{3}{4}\)
2) Cho a,b,c>0 tm \(a^2+b^2+c^2\le abc\).Cmr \(\frac{a}{a^2+bc}+\frac{b}{b^2+ca}+\frac{c}{c^2+ab}\le\frac{1}{2}\)
3) Cho a,b,c>0 tm \(\sqrt{a}+\sqrt{b}+\sqrt{c}=1\).Cmr \(\sqrt{\frac{ab}{a+b+2c}}+\sqrt{\frac{bc}{b+c+2a}}+\sqrt{\frac{ca}{c+a+2b}}\le\frac{1}{2}\)
Giúp mình mới nhé các bạn. Mình đang cần gấp
Cho \(a,b,c>0\)và \(ab+bc+ca=1\). Chứng minh \(M=\frac{1-a^2}{1+a^2}+\sqrt{3}\left(a^2+b^2+c^2\right)\le\frac{1}{8}+\frac{b^2}{1+b^2}+\frac{c^2}{1+c^2}+\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\)
Cho a,b,c >0 thỏa mãn a+b+c\(\le\)\(\frac{3}{2}\).Chứng minh
a,\(\frac{1}{a}\)+\(\frac{1}{b}\)+\(\frac{1}{c}\)\(\ge\)6
b,a+ b+ c+ \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)\(\ge\)\(\frac{15}{2}\)
a)Áp dụng BĐT cosi-schwart:
`A=1/a+1/b+1/c>=9/(a+b+c)`
Mà `a+b+c<=3/2`
`=>A>=9:3/2=6`
Dấu "=" `<=>a=b=c=1/2`
b)Áp dụng BĐT cosi:
`a+1/(4a)>=1`
`b+1/(4b)>=1`
`c+1/(4c)>=1`
`=>a+b+c+1/(4a)+1/(4b)+1/(4c)>=3`
Ta có:
`1/a+1/b+1/c>=6`(Ở câu a)
`=>3/4(1/a+1/b+1/c)>=9/2`
`=>a+b+c+1/(a)+1/(b)+1/(c)>=3+9/2=15/2`
Dấu "=" `<=>a=b=c=1/2`
a)Áp dụng BĐT cosi-schwart:
A=1a+1b+1c≥9a+b+cA=1a+1b+1c≥9a+b+c
Mà a+b+c≤32a+b+c≤32
⇒A≥9:32=6⇒A≥9:32=6
Dấu "=" ⇔a=b=c=12⇔a=b=c=12
b)Áp dụng BĐT cosi:
a+14a≥1a+14a≥1
b+14b≥1b+14b≥1
c+14c≥1c+14c≥1
⇒a+b+c+14a+14b+14c≥3⇒a+b+c+14a+14b+14c≥3
Ta có:
1a+1b+1c≥61a+1b+1c≥6(Ở câu a)
⇒34(1a+1b+1c)≥92⇒34(1a+1b+1c)≥92
⇒a+b+c+1a+1b+1c≥3+92=152⇒a+b+c+1a+1b+1c≥3+92=152
Dấu "=" ⇔a=b=c=12
1) Cho a,b,c>0 tm a+b+c=3. Cmr \(\frac{1}{2+a^2+b^2}+\frac{1}{2+b^2+c^2}+\frac{1}{2+c^2+a^2}\le\frac{3}{4}\)
2) Cho a,b,c>0 tm a^2+b^2+c^2 bé hơn hoặc bằng abc. Cmr \(\frac{a}{a^2+bc}+\frac{b}{b^2+ca}+\frac{c}{c^2+ab}\le\frac{1}{2}\)
3) Cho a,b,c>0 tm a+b+c<=3. Cmr \(\frac{ab}{\sqrt{3+c}}+\frac{bc}{\sqrt{3+a}}+\frac{ca}{\sqrt{3+b}}\le\frac{3}{2}\)
4) Cho a,b,c>0 tm a+b+c=2. Cmr \(\frac{a}{\sqrt{4a+3bc}}+\frac{b}{\sqrt{4b+3ca}}+\frac{c}{\sqrt{4c+3ab}}\le1\)
5) Cho a,b,c>0. Cmr \(\sqrt{\frac{a^3}{5a^2+\left(b+c\right)^2}}+\sqrt{\frac{b^3}{5b^2+\left(c+a\right)^2}}+\sqrt{\frac{c^3}{5c^2+\left(a+b\right)^2}}\le\sqrt{\frac{a+b+c}{3}}\)
6) Cho a,b,c>0. Cmr \(\frac{a^2}{\left(2a+b\right)\left(2a+c\right)}+\frac{b^2}{\left(2b+a\right)\left(2b+c\right)}+\frac{c^2}{\left(2c+a\right)\left(2c+b\right)}\le\frac{1}{3}\)
Giúp mình với nhé các bạn
cho a,b,c>0 thõa mãn a*b*c=1
\(\frac{1}{a^2+2\cdot b^2+3}+\frac{1}{b^{2^{ }}+2\cdot c^2+3}+\frac{1}{c^2+2\cdot b^2+3}\le\frac{1}{2}\)
Áp dụng BĐT Cauchy, ta có :
\(a^2+b^2\ge2ab\)
\(b^2+1\ge2b\)
\(\Rightarrow\) \(a^2+2b^2+3\ge2\left(ab+b+1\right)\)
\(\Rightarrow\) \(\frac{1}{a^2+2b^2+3}\le\frac{1}{2\left(ab+b+1\right)}\) ( 1 )
Tương tự : \(\frac{1}{b^2+2c^2+3}\le\frac{1}{2\left(bc+c+1\right)}\) ( 2 )
\(\frac{1}{c^2+2a^2+3}\le\frac{1}{2\left(ac+a+1\right)}\) ( 3 )
Từ ( 1 ), ( 2 ) và ( 3 ) cộng vế theo vế, ta có :
\(VT\le\frac{1}{2}\left(\frac{1}{ab+b+1}+\frac{1}{bc+c+1}+\frac{1}{ac+a+1}\right)\)
Đặt \(A=\frac{1}{ab+b+1}+\frac{1}{bc+c+1}+\frac{1}{ac+a+1}=\frac{ac}{ab.ac+abc+ac}+\frac{a}{abc+ac+a}+\frac{1}{ac+a+1}\)
\(=\frac{ac+a+1}{ac+a+1}=1\)
\(\Rightarrow\) \(VT\le\frac{1}{2}.1=\frac{1}{2}\)
\(\Rightarrow\) đpcm
Giúp mình mấy câu này với nhé các ban.
1) Cho a,b,c>0 cmr:\(\frac{a}{\sqrt{a^2+b^2}}+\frac{b}{\sqrt{b^2+c^2}}+\frac{c}{\sqrt{c^2+a^2}}\le\frac{3}{\sqrt{2}}\)
2)Cho a,b,c>0 và abc=1. Cmr:\(\sqrt{\frac{a}{4a+4b+1}}+\sqrt{\frac{b}{4b+4c+1}}+\sqrt{\frac{c}{4c+4a+1}}\le1\)
3)Cho a,b,c>0 tm a+b+c=3 Cmr \(\frac{1}{2+a^2+b^2}+\frac{1}{2+b^2+c^2}+\frac{1}{2+c^2+a^2}\le\frac{3}{4}\)
Mình cảm ơn các bạn nhiều
Bài 1:
Đặt \(a^2=x;b^2=y;c^2=z\)
Ta có:\(\sqrt{\frac{x}{x+y}}+\sqrt{\frac{y}{y+z}}+\sqrt{\frac{z}{z+x}}\le\frac{3}{\sqrt{2}}\)
Áp dụng BĐT cô si ta có:
\(\sqrt{\frac{x}{x+y}}=\frac{1}{\sqrt{2}}\sqrt{\frac{4x\left(x+y+z\right)}{3\left(x+y\right)\left(x+z\right)}\frac{3\left(x+z\right)}{2\left(x+y+z\right)}}\)
\(\le\frac{1}{2\sqrt{2}}\left[\frac{4x\left(x+y+z\right)}{3\left(x+y\right)\left(x+z\right)}+\frac{3\left(x+z\right)}{2\left(x+y+z\right)}\right]\)
Tương tự với \(\sqrt{\frac{y}{y+z}}\)và \(\sqrt{\frac{z}{z+x}}\)
Cộng lại ta được:
\(\frac{\sqrt{2}}{3}\left[\frac{x\left(x+y+z\right)}{\left(x+y\right)\left(x+z\right)}+\frac{y\left(x+y+z\right)}{\left(y+z\right)\left(y+x\right)}+\frac{z\left(x+y+z\right)}{\left(z+x\right)\left(z+y\right)}\right]+\frac{3}{2\sqrt{2}}\le\frac{3}{2\sqrt{2}}\)
Sau đó bình phương hai vế rồi
\(\Rightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)\ge8xyz\)đẳng thức đúng
Vậy...
Bài 2:
Trước hết ta chứng minh bất đẳng thức sau:
\(\frac{a}{4a+4b+c}+\frac{b}{4b+4c+a}+\frac{c}{4c+4a+b}\le\frac{1}{3}\)
Nhân cả hai vế bđt với 4(a+b+c)4(a+b+c) rồi thu gọn ta được bđt sau:
\(\frac{4a\left(a+b+c\right)}{4a+4b+c}+\frac{4b\left(a+b+c\right)}{4b+4c+a}+\frac{4c\left(a+b+c\right)}{4c+4a+b}\)\(\le\frac{4}{3}\left(a+b+c\right)\)
\(\left[\frac{4a\left(a+b+c\right)}{4a+4b+}-a\right]+\left[\frac{4b\left(a+b+c\right)}{4b+4c+a}-b\right]+\left[\frac{4c\left(a+b+c\right)}{4c+4a+b}-c\right]\le\frac{a+b+c}{3}\)
\(\frac{ca}{4a+4b+c}+\frac{ab}{4b+4c+a}+\frac{bc}{4c+4a+b}\le\frac{a+b+c}{9}\)
Áp dụng bđt cauchy-Schwarz ta có \(\frac{ca}{4a+4b+c}=\frac{ca}{\left(2b+c\right)+2\left(2a+b\right)}\)\(\le\frac{ca}{9}\left(\frac{1}{2b+c}+\frac{2}{2a+b}\right)\)
Từ đó ta có:
\(\text{∑}\frac{ca}{4a+4b+c}\le\frac{1}{9}\text{∑}\left(\frac{ca}{2b+c}+\frac{2ca}{2a+b}\right)\)\(=\frac{1}{9}\left(\text{ ∑}\frac{ca}{2b+c}+\text{ ∑}\frac{2ca}{2a+b}\right)\)\(=\frac{1}{9}\left(\text{ ∑}\frac{ca}{2b+c}+\text{ ∑}\frac{2ab}{2b+c}\right)=\frac{a+b+c}{9}\)
Đặt VT=A rồi áp dụng bđt cauchy-Schwarz cho VT ta có
\(T^2\le3\left(\frac{a}{4a+4b+c}+\frac{b}{4b+4c+a}+\frac{c}{4c+4a+b}\right)\)\(\le3\cdot\frac{1}{3}=1\Leftrightarrow T\le1\)
Dấu = xảy ra khi a=b=c
c bạn tự làm nhé mình mệt rồi :D
Cho 3 số dương a,b,c . CMR
\(\frac{a}{1+a^2}+\frac{b}{1+b^2}+\frac{c}{1+c^2}\le\frac{3}{2}\le\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\)
\(\sum\)\(\frac{a}{1+a^2}\)\(\le\)\(\sum\)\(\frac{a}{2a}=\frac{3}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(a=b=c=1\)
\(VT=\frac{a^2}{ab+ca}+\frac{b^2}{bc+ab}+\frac{c^2}{ca+bc}\ge\frac{\left(a+b+c\right)^2}{2\left(ab+bc+ca\right)}\ge\frac{\left(a+b+c\right)^2}{\frac{2}{3}\left(a+b+c\right)^2}=\frac{3}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(a=b=c\)
sao olm ko hiện \(\sum\) ra nhỉ ? thoi mk ghi lại v
\(\frac{a}{1+a^2}\le\frac{a}{2a}=\frac{1}{2}\)
tương tự 2 cái kia cộng lại t có bđt cần cm
\(\frac{a}{b+c}+\frac{b}{a+c}+\)\(\frac{c}{a+b}\ge\frac{3}{2}\)
Đặt b + c = x
a + c = y
a + b = z
Có: x + y - z = b + c + a + c - a - b = 2c
\(\frac{x+y-z}{2}=c\)
Tương tự: \(\frac{x+z-y}{2}=b\)
\(\frac{z+y-x}{2}=a\)
Khi đó: = \(\frac{z+y-x}{2x}+\frac{x+z-y}{2y}\)\(+\frac{x+y-z}{2z}\)
= \(\frac{z+y}{2x}-\frac{x}{2x}\)\(+\frac{x+z}{2y}-\frac{y}{2y}+\)\(\frac{x+y}{2z}-\frac{z}{2z}\)
= \(\frac{z+y}{2x}-\frac{1}{2}+\frac{x+z}{2y}-\frac{1}{2}\)\(+\frac{x+y}{2z}-\frac{1}{2}\)
= \(\frac{z+y}{2x}+\frac{x+z}{2y}+\frac{x+y}{2z}\)\(-\frac{3}{2}\)
= \(\frac{1}{2}.\left(\frac{z+y}{x}+\frac{x+z}{y}+\frac{x+y}{z}\right)\)\(-\frac{3}{2}\)
= \(\frac{1}{2}.\)\(\left(\frac{z}{x}+\frac{y}{x}+\frac{x}{y}+\frac{z}{y}+\frac{x}{z}+\frac{y}{z}\right)\)\(-\frac{3}{2}\)
Ta có : \(\frac{z}{x}+\frac{x}{z}\ge2\)
\(\frac{y}{x}+\frac{x}{y}\ge2\)
\(\frac{y}{z}+\frac{z}{y}\ge2\)
\(\Rightarrow\)\(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\ge\)\(\frac{1}{2}.6-\frac{3}{2}\)
\(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\ge\frac{3}{2}\) ( đpcm )
Các bạn giúp mình mấy câu BĐT Cauchy này với
1. cho a,b,c>0 và a+b+c=6 CMR \(\frac{a}{\sqrt{b^3+1}}+\frac{b}{\sqrt{c^3+1}}+\frac{c}{\sqrt{a^3+1}}\ge2\)
2.cho a,b,c>0 CMR \(\frac{ab}{\sqrt{c^2+3}}+\frac{bc}{\sqrt{a^2+3}}+\frac{ac}{\sqrt{b^2+3}}\le\frac{3}{2}\)
3. cho a,b,c >0 CMR \(\frac{ab}{a+3b+2c}+\frac{bc}{b+3c+2a}+\frac{ac}{c+3a+2b}\le\frac{a+b+c}{6}\)
mấy câu này khá là khó, giúp mình với
3.Áp dụng BĐT \(\frac{1}{x+y+z}\le\frac{1}{9}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)ta có
\(\frac{ab}{a+3b+2c}=ab.\frac{1}{\left(a+c\right)+2b+\left(b+c\right)}\le\frac{1}{9}ab.\left(\frac{1}{a+c}+\frac{1}{2b}+\frac{1}{b+c}\right)\)
TT \(\frac{bc}{b+3c+2a}\le\frac{bc}{9}.\left(\frac{1}{b+a}+\frac{1}{2c}+\frac{1}{c+a}\right)\)
\(\frac{ca}{c+3a+2b}\le\frac{ac}{9}.\left(\frac{1}{a+b}+\frac{1}{2a}+\frac{1}{b+c}\right)\)
=> \(VT\le\frac{1}{18}\left(a+b+c\right)+\Sigma.\frac{1}{9}.\left(\frac{bc}{a+c}+\frac{ba}{a+c}\right)=\frac{1}{18}\left(a+b+c\right)+\frac{1}{9}\left(a+b+c\right)=\frac{1}{6}\left(a+b+c\right)\)
Dấu bằng xảy ra khi a=b=c
2. Chuẩn hóa \(a+b+c=3\)
=> \(ab+bc+ac\le3\)
=> \(c^2+3\ge\left(a+c\right)\left(b+c\right)\)
=> \(\frac{ab}{\sqrt{c^2+3}}\le\frac{ab}{\sqrt{\left(c+a\right)\left(c+b\right)}}\le\frac{1}{2}\left(\frac{ab}{a+c}+\frac{ab}{b+c}\right)\)
=> \(VT\le\Sigma\frac{1}{2}\left(\frac{ab}{a+c}+\frac{bc}{a+c}\right)=\frac{1}{2}\left(a+b+c\right)=\frac{3}{2}\)(ĐPCM)
Dấu bằng xảy ra khi a=b=c=1
1. Ta có \(\sqrt{b^3+1}=\sqrt{\left(b+1\right)\left(b^2-b+1\right)}\le\frac{1}{2}\left(b^2+2\right)\)
=> \(\frac{a}{\sqrt{b^3+1}}\ge\frac{2a}{2+b^2}=\frac{2a+ab^2-ab^2}{2+b^2}=a-\frac{2ab^2}{b^2+b^2+4}\)
Lại có \(b^2+b^2+4\ge3\sqrt[3]{b^4.4}\)
=> \(\frac{a}{\sqrt{b^3+1}}\ge a-\frac{2ab^2}{3\sqrt[3]{b^4.4}}=a-\frac{2}{3}.a.\sqrt[3]{\frac{b^2}{4}}\)
Mà \(\sqrt[3]{\frac{b^2}{4}.1}=\sqrt[3]{\frac{b}{2}.\frac{b}{2}.1}\le\frac{1}{3}\left(b+1\right)\)
=>\(\frac{a}{\sqrt[3]{b^3+1}}\ge a-\frac{2}{3}.a.\frac{1}{3}\left(b+1\right)=\frac{7a}{9}-\frac{2}{9}ab\)
Khi đó
\(VT\ge\frac{7}{9}\left(a+b+c\right)-\frac{2}{9}\left(ab+bc+ac\right)\)
Mà \(ab+bc+ac\le\frac{1}{3}\left(a+b+c\right)^2=12\)
=> \(VT\ge\frac{7}{9}.6-\frac{2}{9}.12=2\)(ĐPCM)
Dấu bằng xảy ra khi a=b=c=2
cho a, b, c > 0 và \(a^2+b^2+c^2=3\) C/m \(\frac{a}{a^2+2b+3}+\frac{b}{b^2+2c+3}+\frac{c}{c^2+2a+3}\le\frac{1}{2}\)
\(\sum\frac{a}{a^2+1+2b+2}\le\sum\frac{a}{2a+2b+2}\)
Nên ta chỉ cần chứng minh: \(\sum\frac{a}{2a+2b+2}\le\frac{1}{2}\Leftrightarrow\sum\frac{a}{a+b+1}\le1\)
\(\Leftrightarrow\sum\frac{b+1}{a+b+1}\ge2\)
Đặt \(P=\sum\frac{b+1}{a+b+1}=\sum\frac{\left(b+1\right)^2}{\left(b+1\right)\left(a+b+1\right)}=\sum\frac{\left(b+1\right)^2}{ab+a+b^2+2b+1}\)
\(P\ge\frac{\left(a+b+c+3\right)^2}{ab+a+b^2+2b+1+bc+b+c^2+2c+1+ca+c+a^2+2a+1}\)
\(P\ge\frac{a^2+b^2+c^2+2\left(ab+bc+ca\right)+6\left(a+b+c\right)+9}{a^2+b^2+c^2+ab+bc+ca+3\left(a+b+c\right)+3}\)
\(P\ge\frac{2\left(ab+bc+ca\right)+6\left(a+b+c\right)+12}{ab+bc+ca+3\left(a+b+c\right)+6}=2\) (đpcm)
Dấu "=" xảy rakhi \(a=b=c=1\)