Phân tích đa thức thành nhân tử:
(a + 1)(a3 - 1) - (a - 1)(a3 + 1)
Phân tích các đa thức sau thành nhân tử:
a) 27 x 3 - 54 x 2 y + 36 xy 2 - 8 y 3 ; b) x 3 - 1 + 5 x 2 -5+3x - 3;
c) a 5 +a 4 +a 3 +a 2 +a + 1.
a) ( 3 x - 2 y ) 3 . b) ( x - 1 ) ( x + 3 ) 2 .
Phân tích đa thức thành nhân tử:
1) x√y+y√x
2) 9-6√a+a
3) a+2√ab+b
4)x-y+√x+√y
5) a+2√ab+b-1
1) \(x\sqrt{y}+y\sqrt{x}=\sqrt{xy}\left(\sqrt{x}+\sqrt{y}\right)\)
2) \(9-6\sqrt{a}+a=\left(\sqrt{a}-3\right)^2\)
3) \(a+2\sqrt{ab}+b=\left(\sqrt{a}+\sqrt{b}\right)^2\)
4) \(x-y+\sqrt{x}+\sqrt{y}=\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)+\left(\sqrt{x}+\sqrt{y}\right)=\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}+1\right)\)
5) \(a+2\sqrt{ab}+b-1=\left(\sqrt{a}+\sqrt{b}\right)^2-1=\left(\sqrt{a}+\sqrt{b}-1\right)\left(\sqrt{a}+\sqrt{b}+1\right)\)
1) \(x\sqrt{y}+y\sqrt{x}=\sqrt{x}\sqrt{y}\left(\sqrt{x}+\sqrt{y}\right)\)
2) \(9-6\sqrt{a}+a=\left(3-\sqrt{a}\right)^2\)
3) \(a+2\sqrt{ab}+b=\left(\sqrt{a}+\sqrt{b}\right)^2\)
4) \(x-y+\sqrt{x}+\sqrt{y}=\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)+\left(\sqrt{x}+\sqrt{y}\right)=\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}+1\right)\)
5) \(a+2\sqrt{ab}+b-1=\left(\sqrt{a}+\sqrt{b}\right)^2-1^2=\left(\sqrt{a}+\sqrt{b}-1\right)\left(\sqrt{a}+\sqrt{b}+1\right)\)
\(1,=\sqrt{xy}\left(\sqrt{x}+\sqrt{y}\right)\\ 2,=\left(\sqrt{a}-3\right)^2\\ 3,=\left(\sqrt{a}+\sqrt{b}\right)^2\\ 4,=\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)+\left(\sqrt{x}+\sqrt{y}\right)=\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}+1\right)\\ 5,=\left(\sqrt{a}+\sqrt{b}\right)^2-1=\left(\sqrt{a}+\sqrt{b}-1\right)\left(\sqrt{a}+\sqrt{b}+1\right)\)
phân tích thành nhân tử
(a+1).(a3-1)-(a-1).(a3+1)
(a + 1)(a3 - 1) - (a - 1)(a3 + 1)
= (a + 1)(a - 1)(a2 + a + 1) - (a - 1)(a + 1)(a2 - a + 1)
= (a2 - 1)(a2 + a + 1) - (a2 - 1)(a2 - a + 1)
= (a2 - 1)(a2 + a + 1 - a2 + a - 1)
= 2a(a2 - 1)
phân tích đa thức thành nhân tử a(b3-c3)+b(c3-a3)+c(a3-b3)
a(b3 - c3) + b(c3 - a3) + c(a3 - b3)
= a(b3 - c3 ) + b( c3 - b3 + b3 - a3) + c(a3 - b3)
= a(b3 - c3) + b(c3 - b3) + b(b3 - a3) + c(a3 - b3)
= a(b3 - c3) - b(b3 - c3) - [b(a3 - b3) - c(a3- b3)]
= (b3 - c3)(a - b) - (a3- b3)(b - c)
= (b - c)(b2 + bc + c2)(a - b) - (a - b)(a2 + ab + b2)(b - c)
= (b - c)(a - b)(b2 + bc + c2 - a2 + ab - b2)
= (b - c)(a - b) [ (c2 - a2) + (bc - ab) ]
= (b - c)(a - b) [ (c - a)(c + a) + b(c - a) ]
= (b - c)(a -b) [ (c - a)(c + a + b) ]
= (a- b)(b - c)(c - a)(a + b + c)
Phân tích đa thức thành nhân tử:
a) M = ( a + b + c ) 3 - a 3 - b 3 - c 3 ;
b) N = a 3 + b 3 + c 3 - 3abc.
Phân tích đa thức thành nhân tử a3(c−b2)+b3(a−c2)+c3(b−a2)+abc(abc−1)
a3 ( c - b2 ) + b3 ( a - c2 ) + c3 ( b - a2 ) + abc ( abc - 1 )
= a3c - a3b2 + b3a - b3c2 + c3b - c3a2 + a2b2c2 - abc
= a2b2c2 - b3c2 - ( a2c3 - bc3 ) - ( a3b2 - ab3 ) + ( a3c - abc )
= b2c2 . ( a2 - b ) - c3 ( a2 - b ) - ab2 ( a2 - b ) + ac ( a2 - b )
= ( a2 - b ) ( b2c2 - c3 - ab2 + ac )
= ( a2 - b ) ( b2 - c ) ( c2 - a )
Phân tích đa thức sau thành nhân tử
27x3-54x2y+36xy2-8y3
x3-1+5x2-5+3x-3
a5+a4+a3+a2+a+1
\(a,27x^3-54x^2y+36xy^2-8y^3\)
\(=\left(3x\right)^3-3.\left(3x\right)^2.2y+3.3x.\left(2y\right)^2-\left(2y\right)^3\)
\(=\left(3x-2y\right)^3\)
\(b,x^3-1+5x^2-5+3x-3\)
\(=\left(x-1\right)\left(x^2+x+1\right)+5\left(x^2-1\right)+3\left(x-1\right)\)
\(=\left(x-1\right)\left(x^2+x+1\right)+5\left(x-1\right)\left(x+1\right)+3\left(x-1\right)\)
\(=\left(x-1\right)\left[x^2+x+1+5\left(x+1\right)+3\right]\)
\(=\left(x-1\right)\left(x^2+6x+9\right)\)
\(=\left(x-1\right)\left(x+3\right)^2\)
\(c,a^5+a^4+a^3+a^2+a+1\)
\(=a^4\left(a+1\right)+a^2\left(a+1\right)+\left(a+1\right)\)
\(=\left(a+1\right)\left(a^4+a^2+1\right)\)
\(27x^3-54x^2y+36xy^2-8y^3\)
\(=\left(3x\right)^3-3\cdot\left(3x\right)^2\cdot2y+3\cdot3x\cdot\left(2y\right)^2-\left(2y\right)^3\)
\(=\left(3x-2y\right)^3\)
______________________
\(x^3-1+5x^2-5+3x-3\)
\(=\left(x^3-1\right)+\left(5x^2-5\right)+\left(3x-3\right)\)
\(=\left(x-1\right)\left(x^2+x+1\right)+5\left(x^2-1\right)+3\left(x-1\right)\)
\(=\left(x-1\right)\left(x^2+x+1\right)+5\left(x+1\right)\left(x-1\right)+3\left(x-1\right)\)
\(=\left(x-1\right)\left(x^2+x+1+5x+5+3\right)\)
\(=\left(x-1\right)\left(x^2+6x+9\right)\)
\(=\left(x-1\right)\left(x+3\right)^2\)
________________
\(a^5+a^4+a^3+a^2+a+1\)
\(=a^4\left(a+1\right)+a^2\left(a+1\right)+\left(a+1\right)\)
\(=\left(a+1\right)\left(a^4+a^2+1\right)\)
\(=\left(a+1\right)\left(a^2-a+1\right)\left(a^2+a+1\right)\)
Bài 2 Phân tích đa thức sau thành nhân tử
a. x4 + 2x3 − 4x − 4
b. x2(1 − x2) − 4 − 4x2
c. x2 + y2 − x2y2 + xy − x − y
d* a3 + b3 + c3 − 3abc
a) \(x^4+2x^3-4x-4=\left(x^4+2x^3+x^2\right)-\left(x^2+4x+4\right)\)
\(=\left(x^2+x\right)^2-\left(x+2\right)^2=\left(x^2+x-x-2\right)\left(x^2+x+x+2\right)\)
\(=\left(x^2-2\right)\left(x^2+2x+2\right)\)
a) Ta có: \(x^4+2x^3-4x-4\)
\(=\left(x^4+2x^3+x^2\right)-\left(x^2+4x+4\right)\)
\(=\left(x^2+x\right)^2-\left(x+2\right)^2\)
\(=\left(x^2+x-x-2\right)\left(x^2+x+x+2\right)\)
\(=\left(x^2-2\right)\cdot\left(x^2+2x+2\right)\)
d) Ta có: \(a^3+b^3+c^3-3abc\)
\(=\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc\)
\(=\left(a+b+c\right)\left[\left(a+b\right)^2-c\left(a+b\right)+c^2\right]-3ab\left(a+b+c\right)\)
\(=\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2-3ab\right)\)
\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)\)
phân tích đa thức sau thành nhân tử
a) x2-4y2-x-+2y
b) x2-y2-4y-4
c) 9x2-y2-2yz-z2
d) a3x-ab+b-x
e) 36-a2+2ab-b2
g) a3+3a3+3a3+1-b3
a) x2-4y2-x++2y
= x2-(2y)2-x+2y
= (x-2y)(x+2y)-(x-2y)
=(x-2y)(x+2y-1)
Bài 2: Phân tích đa thức thành nhân tử:
1) 6x3y - 12x2y2 + 6xy3 6) x – x -2
2) (x2 +4)2 -16 7) x4 - 5x2 + 4
3) 5x2 - 5xy - 10x + 10y 8) x2 – x3 - 2x2 - x
4) a3 - 3a + 3b – b3 9) (a3 – 27) – (3 – a)(6a + 9)
5) x2 - 2x – y2 +1 10) x2(y – z) + y2(z – x) + z2(x – y)
\(1,=6xy\left(x^2-2xy+y^2\right)=6xy\left(x-y\right)^2\\ 2,=\left(x^2+4-4\right)\left(x^2+4+4\right)=x^2\left(x^2+8\right)\\ 3,=5x\left(x-y\right)-10\left(x-y\right)=5\left(x-2\right)\left(x-y\right)\\ 4,=\left(a-b\right)\left(a^2+ab+b^2\right)-3\left(a-b\right)=\left(a-b\right)\left(a^2+ab+b^2-3\right)\\ 5,=\left(x-1\right)^2-y^2=\left(x+y-1\right)\left(x-y-1\right)\\ 6,Sửa:x^2-x-2=x^2+x-2x-2=\left(x+1\right)\left(x-2\right)\\ 7,=x^4-4x^2-x^2+4=\left(x^2-4\right)\left(x^2-1\right)\\ =\left(x-2\right)\left(x+2\right)\left(x-1\right)\left(x+1\right)\\ 8,=-x^3-x^2-x=-x\left(x^2+x+1\right)\\ 9,=\left(a-3\right)\left(a^2+3a+9\right)+\left(a-3\right)\left(6a+9\right)\\ =\left(a-3\right)\left(a^2+9a+18\right)\\ =\left(a-3\right)\left(a^2+3a+6a+18\right)\\ =\left(a-3\right)\left(a+3\right)\left(a+6\right)\)
\(10,=x^2y-x^2z+y^2z-xy^2+z^2\left(x-y\right)\\ =xy\left(x-y\right)-z\left(x-y\right)\left(x+y\right)+z^2\left(x-y\right)\\ =\left(x-y\right)\left(xy-xz-yz+z^2\right)\\ =\left(x-y\right)\left(x-z\right)\left(y-z\right)\)