1/3\(\sqrt{ }\)9+6x +x2 +4x/3 +5
Rút gọn biểu thức
Rút gọn biểu thức
1) x + 3 + \(\sqrt{x^2-6x+9}\) (x \(\le\) 3)
2) \(\sqrt{x^2+4x+4}-\sqrt{x^2}\) (-2 \(\le\) x \(\le\) 0)
3) \(\sqrt{x^{2^{ }}+2\sqrt{x^2-1}}-\sqrt{x^2-2\sqrt{x^2-1}}\)
4) \(\dfrac{\sqrt{x^2-2x+1}}{x-1}\) (x > 1)
5) |x - 2| + \(\dfrac{\sqrt{x^2-4x+4}}{x-2}\) (x < 2)
6) 2x - 1 - \(\dfrac{\sqrt{x^2-10x+25}}{x-5}\)
1.
$x+3+\sqrt{x^2-6x+9}=x+3+\sqrt{(x-3)^2}=x+3+|x-3|$
$=x+3+(3-x)=6$
2.
$\sqrt{x^2+4x+4}-\sqrt{x^2}=\sqrt{(x+2)^2}-\sqrt{x^2}$
$=|x+2|-|x|=x+2-(-x)=2x+2$
3.
$\sqrt{x^2+2\sqrt{x^2-1}}-\sqrt{x^2-2\sqrt{x^2-1}}$
$=\sqrt{(\sqrt{x^2-1}+1)^2}-\sqrt{(\sqrt{x^2-1}-1)^2}$
$=|\sqrt{x^2-1}+1|+|\sqrt{x^2-1}-1|$
$=\sqrt{x^2-1}+1+|\sqrt{x^2-1}-1|$
4.
$\frac{\sqrt{x^2-2x+1}}{x-1}=\frac{\sqrt{(x-1)^2}}{x-1}$
$=\frac{|x-1|}{x-1}=\frac{x-1}{x-1}=1$
5.
$|x-2|+\frac{\sqrt{x^2-4x+4}}{x-2}=2-x+\frac{\sqrt{(x-2)^2}}{x-2}$
$=2-x+\frac{|x-2|}{x-2}|=2-x+\frac{2-x}{x-2}=2-x+(-1)=1-x$
6.
$2x-1-\frac{\sqrt{x^2-10x+25}}{x-5}=2x-1-\frac{\sqrt{(x-5)^2}}{x-5}$
$=2x-1-\frac{|x-5|}{x-5}$
rút gọn biểu thức
A=(2x-3)(4x^2-6x+9)-2(4x^3-1)
\(A=\left(2x-3\right)\left(4x^2-6x+9\right)-2\left(4x^3-1\right)\)
\(A=8x^3-12x^2+18x-12x^2+18x-27-8x^3+2\)
\(A=\left(8x^3-8x^3\right)+\left(-12x^2-12x^2\right)+\left(18x+18x\right)+\left(-27+2\right)\)
\(A=-24x^2+36x-25\)
Rút gọn biểu thức: A=(2x+3) (4x^2-6x+9) - 2(4x^2-1)
\(A=\left(2x+3\right)\left(4x^2-6x+9\right)-2\left(4x^2-1\right)\)
\(=8x^3-12x^2+18x+12x^2-18x+27-8x^2+2\)
\(=8x^3-8x^2+29\)
ta có
\(A=\left(2x+3\right)\left(4x^2-6x+9\right)-2\left(4x^2-1\right)\)
\(A=8x^3-12x^2+18x+12x^2-18x+27-8x^2+2\)
\(A=8x^3-8x^2+29\)
Trả lời:
A = ( 2x + 3 ) ( 4x2 - 6x + 9 ) - 2 ( 4x2 - 1 )
= 8x3 - 12x2 + 18x + 12x2 - 18x + 27 - 8x2 + 2
= 8x3 - 8x2 + 29
Rút gọn các biểu thức sau:
a. $A = (\sqrt{12}-2\sqrt5)\sqrt3 + \sqrt{60}$.
b. $B = \dfrac{\sqrt{4x}}{x-3}.\sqrt{\dfrac{x^2-6x+9}x}$ với $0<x<3$.
a, \(A=\left(\sqrt{12}-2\sqrt{5}\right)\sqrt{3}+\sqrt{60}\)
\(=\left(2\sqrt{3}-2\sqrt{5}\right)\sqrt{3}+2\sqrt{15}\)
\(=2\sqrt{9}-2\sqrt{15}+2\sqrt{15}=2\sqrt{9}\)
b, \(B=\frac{\sqrt{4x}}{x-3}\sqrt{\frac{x^2-6x+9}{x}}=\frac{2\sqrt{x}}{x-3}.\sqrt{\frac{\left(x-3\right)^2}{x}}\)
\(=\frac{2\sqrt{x}}{x-3}.\frac{x-3}{\sqrt{x}}=2\)
em thiếu, giờ mới nhìn lại \(2\sqrt{9}=2.3=6\)
Rút gọn biểu thức
(5x+1)(x^2-1)-(2x-3)(4x^2-6x+9)
mình chỉ biết làm một nửa k biết có đứng k bạn có chắc đề bài đúng k
5x^2 - 1^2 - (2x^3-3^3)= (5x^2-1x^2)-(2x^3-3^3) hdt số 3 và số 7
Kết quả rút gọn biểu thức (2x - 3) (4x^2 + 6x + 9) - 2 ( 4x^3 - 25) là x =
cho − 3 bé hơn bằng x bé hơn bằng 3 rút gọn biểu thức T= \(\sqrt{x^2-6x+9}+\sqrt{x^2+6x+9}\) ta được
Ta có: \(T=\sqrt{x^2-6x+9}+\sqrt{x^2+6x+9}\)
\(=\left|x-3\right|+\left|x+3\right|\)
\(=3-x+x+3\)
\(=6\)
rút gọn biểu thức sau:
(4x-3)(3x+2)-(6x-1)(2x-5)+1
12x\(^2\)+ 8x-9x-6-12x\(^2\)+30x+2x-5+1 = 31x - 10
2.4 Rút gọn biểu thức
\(a,\dfrac{3-\sqrt{x}}{x-9}\) ( vs x ≥ 0, x≠ 9)
b, \(\dfrac{x-5\sqrt{x}+6}{\sqrt{x}-3}\)( vs x ≥ 0 ; x ≠ 9)
c, \(6-2x-\sqrt{9-6x+x^2}\left(x< 3\right)\)
a) \(\dfrac{3-\sqrt{x}}{x-9}=\dfrac{-\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}=-\dfrac{1}{\sqrt{x+3}}\)(\(x\ge0,x\ne9\))
b) \(\dfrac{x-5\sqrt{x}+6}{\sqrt{x}-3}=\dfrac{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}{\sqrt{x}-3}=\sqrt{x}-2\left(x\ge0,x\ne9\right)\)
a) \(\dfrac{3-\sqrt{x}}{x-9}=\dfrac{3-\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}=-\dfrac{1}{\sqrt{x}+3}\)
b) \(\dfrac{x-5\sqrt{x}+6}{\sqrt{x}-3}=\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}{\sqrt{x}-3}=\sqrt{x}-2\)
c) \(6-2x-\sqrt{9-6x+x^2}=6-2x-\sqrt{\left(3-x\right)^2}=6-2x-\left|3-x\right|\)
mà \(x< 3\Rightarrow3-x>0\Rightarrow6-2x-\left|3-x\right|=6-2x-3+x=3-x\)
a,\(\dfrac{3-\sqrt{x}}{x-9}\)
=\(-\dfrac{3-\sqrt{x}}{\left(3-\sqrt{x}\right)\left(3+\sqrt{x}\right)}\)
=\(-\dfrac{1}{3+\sqrt{x}}\)