\(\sqrt{\left(-3\right)}^4-\sqrt{\left(-7\right)}^2-\sqrt{-\left(-4\right)^3}\)4 mũ 3
Rút gọn :
\(\dfrac{\sqrt{x+\sqrt{4\left(x-1\right)}}-\sqrt{x-\sqrt{4\left(x-1\right)}}}{\sqrt{x^2-4\left(x-1\right)}}.\left(\sqrt{x-1}-\dfrac{1}{\sqrt{x-1}}\right)\)
b)\(\left(\sqrt{2}+1\right)\left(\sqrt{3}+1\right)\left(\sqrt{6}+1\right)\left(5-2\sqrt{2}-\sqrt{3}\right)\)
c)\(\left(\sqrt{5}+1\right)\left(\sqrt{7}+1\right)\left(\sqrt{35}+1\right)\left(34-4\sqrt{7}-6\sqrt{5}\right)\)
d) \(\left(\sqrt{7}+1\right)\left(2\sqrt{2}-1\right)\left(2\sqrt{14}-1\right)\left(55+12\sqrt{2}-7\sqrt{7}\right)\)
e)\(\left(3\sqrt{2}+1\right)\left(2\sqrt{3}+1\right)\left(6\sqrt{6}+1\right)\left(215-34\sqrt{3}-33\sqrt{2}\right)\)
tính
1.\(\left(\sqrt{15}-2\sqrt{3}\right)^2+12\sqrt{5}\)
2.\(3\sqrt{2}\left(4-\sqrt{2}\right)+3\left(1-2\sqrt{2}\right)^2\)
3.\(\dfrac{1}{2}\left(\sqrt{6}+\sqrt{5}\right)^2-\dfrac{1}{4}\sqrt{120}-\sqrt{\dfrac{15}{2}}\)
4.\(\left(\sqrt{4-\sqrt{7}}-\sqrt{4+\sqrt{7}}\right)^2\)
5.\(\left(\sqrt{\sqrt{14}+\sqrt{5}}+\sqrt{\sqrt{14}-\sqrt{5}}\right)^2\)
6.\(\left(\sqrt{3}+1\right)^3-\left(\sqrt{3}-1\right)^3\)
7.\(\left(\sqrt{2}+1\right)^3-\left(\sqrt{2}-1\right)^3\)
8.\(\sqrt{13-\sqrt{160}}-\sqrt{53+4\sqrt{90}}\)
9.\(\sqrt{3-\sqrt{5}}+\sqrt{3+\sqrt{5}}\)
Tính:
1) ( \(2\sqrt{5}-\sqrt{7}\) ) \(\left(2\sqrt{5}+\sqrt{7}\right)\)
2) \(\left(5\sqrt{2}+2\sqrt{3}\right)\left(2\sqrt{3}-5\sqrt{2}\right)\)
3) \(\sqrt{\left(\sqrt{7}-2\right)^2}+\sqrt{\left(\sqrt{7}+2\right)^2}\)
4) \(\sqrt{\left(\sqrt{3}+\sqrt{2}\right)^2}+\sqrt{\left(\sqrt{3}-\sqrt{2}\right)^2}\)
5) \(\left(\sqrt{5}-\sqrt{6}\right)^2\)
6) \(\left(\sqrt{3}-\sqrt{5}\right)^2\)
7) \(\left(2\sqrt{2}+\sqrt{3}\right)^2\)
\(1,=20-7=13\\ b,=12-50=-38\\ c,=\sqrt{7}-2+\sqrt{7}+2=2\sqrt{7}\\ d,=\sqrt{3}+\sqrt{2}+\sqrt{3}-\sqrt{2}=2\sqrt{3}\\ e,=11+2\sqrt{30}\\ f,=8-2\sqrt{15}\\ g,=11+2\sqrt{6}\)
1) \(=\left(2\sqrt{5}\right)^2-\left(\sqrt{7}\right)^2=20-7=13\)
2) \(=\left(2\sqrt{3}\right)^2-\left(5\sqrt{2}\right)^2=12-50=-38\)
3) \(=\sqrt{7}-2+\sqrt{7}+2=2\sqrt[]{7}\)
4) \(=\sqrt{3}+\sqrt{2}+\sqrt{3}-\sqrt{2}=2\sqrt{3}\)
5) \(=5+6-2\sqrt{5.6}=11-2\sqrt{30}\)
6) \(=3+5-2\sqrt{3.5}=8-4\sqrt{2}\)
7) \(=\left(2\sqrt{2}\right)^2+\left(\sqrt{3}\right)^2+2\sqrt{2\sqrt{2}.3}=11+2\sqrt{6\sqrt{2}}\)
a : \(\sqrt{2-\sqrt{3}}+\sqrt{2+\sqrt{3}}\)
b : \(\sqrt{4-\sqrt{7}}-\sqrt{4+\sqrt{7}}\)
c : \(\sqrt{\left(2\sqrt{5}+1\right)^2}-\sqrt{\left(\sqrt{5}-2\right)^2}\)
d : \(\sqrt{52-16\sqrt{3}}+\sqrt{\left(4\sqrt{3}-7\right)^2}\)
a.
$A=\sqrt{2-\sqrt{3}}+\sqrt{2+\sqrt{3}}$
$A\sqrt{2}=\sqrt{4-2\sqrt{3}}+\sqrt{4+2\sqrt{3}}$
$A\sqrt{2}=\sqrt{(\sqrt{3}-1)^2}+\sqrt{(\sqrt{3}+1)^2}$
$=|\sqrt{3}-1|+|\sqrt{3}+1|=\sqrt{3}-1+\sqrt{3}+1=2\sqrt{3}$
$\Rightarrow A=2\sqrt{3}: \sqrt{2}=\sqrt{6}$
---------------------
$B=\sqrt{4-\sqrt{7}}-\sqrt{4+\sqrt{7}}$
$B\sqrt{2}=\sqrt{8-2\sqrt{7}}-\sqrt{8+2\sqrt{7}}$
$B\sqrt{2}=\sqrt{(\sqrt{7}-1)^2}-\sqrt{(\sqrt{7}+1)^2}$
$=|\sqrt{7}-1|-|\sqrt{7}+1|=\sqrt{7}-1-(\sqrt{7}+1)=-2$
$\Rightarrow B=-2:\sqrt{2}=-\sqrt{2}$
\(a,\sqrt{2-\sqrt{3}}+\sqrt{2+\sqrt{3}}\)
\(A-\sqrt{2}=\left(\sqrt{2-\sqrt{3}}-\sqrt{2+\sqrt{3}}\right)\cdot\sqrt{2}\\ =\sqrt{2-\sqrt{3}}\cdot\sqrt{2}-\sqrt{2+\sqrt{3}}\cdot\sqrt{2}\\ =\sqrt{\left(2-\sqrt{3}\right)\cdot2}-\sqrt{\left(2+\sqrt{3}\right)\cdot2}\\ =\sqrt{4-2\sqrt{3}}-\sqrt{4+2\sqrt{3}}\\ =\sqrt{3-2\sqrt{3}+1}-\sqrt{3+2\sqrt{3}+1}\\ =\sqrt{\left(\sqrt{3}-1\right)^2}-\sqrt{\left(\sqrt{3}+1\right)^2}\\ =\left|\sqrt{3}-1\right|-\left|\sqrt{3}+1\right|\\ =\sqrt{3}-1-\sqrt{3}-1\\ =-2\)
Ta có :
\(A-\sqrt{2}=-2\\ \Leftrightarrow A=\dfrac{-2}{\sqrt{2}}=\dfrac{-\left(\sqrt{2}\right)^2}{\sqrt{2}}=-\sqrt{2}\)
__
C làm giống câu a, nhé.
__
\(\sqrt{\left(2\sqrt{5}+1\right)^2}-\sqrt{\left(\sqrt{5}-2\right)^2}\\ =\left|2\sqrt{5}+1\right|-\left|\sqrt{5}-2\right|\\ =2\sqrt{5}+1-\sqrt{5}+2\\ =3+\sqrt{5}\)
__
\(\sqrt{52-16\sqrt{3}}+\sqrt{\left(4\sqrt{3}-7\right)^2}\\ =\sqrt{48-2\cdot4\cdot\sqrt{3}\cdot2+4}+\left|4\sqrt{3}-7\right|\\ =\sqrt{\left(4\sqrt{3}\right)^2-2\cdot4\cdot\sqrt{3}\cdot2+2^2}+4\sqrt{3}-7\\ =\sqrt{\left(4\sqrt{3}-2\right)^2}+4\sqrt{3}-7\\ =4\sqrt{3}-2+4\sqrt{3}-7\\ =8\sqrt{3}-9\)
c.
$C=\sqrt{(2\sqrt{5}+1)^2}-\sqrt{(\sqrt{5}-2)^2}$
$=|2\sqrt{5}+1|-|\sqrt{5}-2|=2\sqrt{5}+1-(\sqrt{5}-2)=\sqrt{5}+3$
d.
$D=\sqrt{52-16\sqrt{3}}+\sqrt{4\sqrt{3}-7)^2}$
$=\sqrt{(4\sqrt{3})^2-2.4\sqrt{3}.2+2^2}+|4\sqrt{3}-7|$
$=\sqrt{(4\sqrt{3}-2)^2}+|4\sqrt{3}-7|$
$=|4\sqrt{3}-2|+|4\sqrt{3}-7|$
$=4\sqrt{3}-2+7-4\sqrt{3}=5$
Tính:
\(A=2\sqrt{\left(-3\right)^6}+2\sqrt{\left(-2\right)^4}-4\sqrt{\left(-2\right)^6}\)
\(B=\sqrt{\left(\sqrt{2}-2\right)^2}+\sqrt{\left(\sqrt{2}-3\right)^2}\)
\(C=\sqrt{\left(3-\sqrt{3}\right)^2}-\sqrt{\left(1+\sqrt{3}\right)^2}\)
\(D=\sqrt{\left(5+\sqrt{6}\right)^2}-\sqrt{\left(\sqrt{6}-5\right)^2}\)
\(E=\sqrt{17^2-8^2}-\sqrt{3^2+4^2}\)
\(A=2.\left|\left(-3\right)\right|^3+2.\left(-2\right)^2-4\left|\left(-2\right)^3\right|\)
\(=54+8-32=30\)
\(B=\left|\sqrt{2}-2\right|+\left|\sqrt{2}-3\right|=2-\sqrt{2}+3-\sqrt{2}\)
\(=5-2\sqrt{2}\)
\(C=\left|3-\sqrt{3}\right|-\left|1+\sqrt{3}\right|=3-\sqrt{3}-1-\sqrt{3}\)
\(=2-2\sqrt{3}\)
\(D=\left|5+\sqrt{6}\right|-\left|\sqrt{6}-5\right|=5+\sqrt{6}-5+\sqrt{6}\)
\(=2\sqrt{6}\)
\(E=\sqrt{15^2}-\sqrt{5^2}=15-5=10\)
`A=2sqrt{(-3)^6}+2sqrt{(-2)^4}-4sqrt{(-2)^6}=2|(-3)^3|+2|(-2)^2|-4|(-2)^3|=54+8-32=30` $\\$ `B=sqrt{(sqrt2-2)^2}+sqrt{(sqrt2-3)^2}=2-sqrt2+3-sqrt2=5-2sqrt2` $\\$ `C=sqrt{(3-sqrt3)^2}-sqrt{(1+sqrt3)^2}=3-sqrt3-sqrt3-1=2-2sqrt3` $\\$ `D=sqrt{(5+sqrt6)^2}-sqrt{(sqrt6-sqrt5)^2}=5+sqrt6-5+sqrt6=2sqrt6` $\\$ `E=sqrt{17^2-8^2}-sqrt{3^2+4^2}=sqrt{289-64}-sqrt{9+16}=sqrt(225)-sqrt{25}=15-5=10`
Giải phương trình
\(\left(7-4\sqrt{3}\right)\left(2+\sqrt{3}\right)^x+\left(2+\sqrt{3}\right)^x=4\left(2-\sqrt{3}\right)\)
Rút gọn biểu thức:
\(A=\sqrt{\left(2-\sqrt{7}\right)^2}+\left(\sqrt{7}-1\right)^2\)
\(B=3\sqrt{\left(1,5\right)^2}-4\sqrt{\left(3-\sqrt{2}\right)^2}\)
\(A=\left|2-\sqrt{7}\right|+7-2\sqrt{7}+1\)
\(=\sqrt{7}-2+8-2\sqrt{7}\) \(=6-\sqrt{7}\)
\(B=3\cdot1,5-4\cdot\left|3-\sqrt{2}\right|\) \(=4,5-4\left(3-\sqrt{2}\right)\)
\(=4,5-12+4\sqrt{2}\) \(=4\sqrt{2}-7,5\)
Ta có: \(A=\sqrt{\left(2-\sqrt{7}\right)^2}+\left(\sqrt{7}-1\right)^2\)
\(=\sqrt{7}-2+8-2\sqrt{7}\)
\(=6-\sqrt{7}\)
Rút gọn :
a) \(\left(\sqrt{6}+\sqrt{2}\right).\left(\sqrt{3}-2\right)\left(\sqrt{2+\sqrt{3}}\right)\)
b) \(\sqrt{2}.\left(\sqrt{2-\sqrt{3}}\right).\left(\sqrt{3}+1\right)\)
c) \(\left(\sqrt{10}-\sqrt{6}\right).\left(\sqrt{4-\sqrt{15}}\right)\)
d)\(\left(\sqrt{3}-\sqrt{12}\right).\left(\sqrt{5+2\sqrt{6}}\right)\)
e) \(\sqrt{2-\sqrt{3}}.\left(\sqrt{6}-\sqrt{2}\right).\left(2+\sqrt{3}\right)\)
f) \(\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{7+4\sqrt{3}}}}}\)
a) Ta có: \(\left(\sqrt{6}+\sqrt{2}\right)\cdot\left(\sqrt{3}-2\right)\cdot\left(\sqrt{2+\sqrt{3}}\right)\)
\(=\sqrt{2}\cdot\left(\sqrt{3}+1\right)\cdot\left(\sqrt{3}-2\right)\cdot\sqrt{2+\sqrt{3}}\)
\(=\sqrt{4+2\sqrt{3}}\cdot\left(\sqrt{3}+1\right)\cdot\left(\sqrt{3}-2\right)\)
\(=\sqrt{3+2\cdot\sqrt{3}\cdot1+1}\cdot\left(\sqrt{3}+1\right)\cdot\left(\sqrt{3}-2\right)\)
\(=\sqrt{\left(\sqrt{3}+1\right)^2}\cdot\left(\sqrt{3}+1\right)\cdot\left(\sqrt{3}-2\right)\)
\(=\left|\sqrt{3}+1\right|\cdot\left(\sqrt{3}+1\right)\cdot\left(\sqrt{3}-2\right)\)
\(=\left(\sqrt{3}+1\right)\cdot\left(\sqrt{3}+1\right)\cdot\left(\sqrt{3}-2\right)\)(Vì \(\sqrt{3}>1>0\))
\(=\left(4+2\sqrt{3}\right)\cdot\left(\sqrt{3}-2\right)\)
\(=2\cdot\left(\sqrt{3}+2\right)\left(\sqrt{3}-2\right)\)
\(=2\cdot\left(3-4\right)\)
\(=-2\)
b) Ta có: \(\sqrt{2}\cdot\left(\sqrt{2-\sqrt{3}}\right)\cdot\left(\sqrt{3}+1\right)\)
\(=\sqrt{4-2\sqrt{3}}\cdot\left(\sqrt{3}+1\right)\)
\(=\sqrt{3-2\cdot\sqrt{3}\cdot1+1}\cdot\left(\sqrt{3}+1\right)\)
\(=\sqrt{\left(\sqrt{3}-1\right)^2}\cdot\left(\sqrt{3}+1\right)\)
\(=\left|\sqrt{3}-1\right|\cdot\left(\sqrt{3}+1\right)\)
\(=\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)\)(Vì \(\sqrt{3}>1\))
\(=3-1=2\)
c) Ta có: \(\left(\sqrt{10}-\sqrt{6}\right)\cdot\left(\sqrt{4-\sqrt{15}}\right)\)
\(=\sqrt{2}\cdot\sqrt{4-\sqrt{15}}\cdot\left(\sqrt{5}-\sqrt{3}\right)\)
\(=\sqrt{8-2\sqrt{15}}\cdot\left(\sqrt{5}-\sqrt{3}\right)\)
\(=\sqrt{5-2\cdot\sqrt{5}\cdot\sqrt{3}+3}\cdot\left(\sqrt{5}-\sqrt{3}\right)\)
\(=\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}\cdot\left(\sqrt{5}-\sqrt{3}\right)\)
\(=\left|\sqrt{5}-\sqrt{3}\right|\cdot\left(\sqrt{5}-\sqrt{3}\right)\)
\(=\left(\sqrt{5}-\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right)\)(Vì \(\sqrt{5}>\sqrt{3}\))
\(=8-2\sqrt{15}\)
d) Ta có: \(\left(\sqrt{3}-\sqrt{12}\right)\cdot\left(\sqrt{5+2\sqrt{6}}\right)\)
\(=\sqrt{3}\cdot\left(1-2\right)\cdot\sqrt{3+2\cdot\sqrt{3}\cdot\sqrt{2}+2}\)
\(=-\sqrt{3}\cdot\sqrt{\left(\sqrt{3}+\sqrt{2}\right)^2}\)
\(=-\sqrt{3}\cdot\left|\sqrt{3}+\sqrt{2}\right|\)
\(=-\sqrt{3}\cdot\left(\sqrt{3}+\sqrt{2}\right)\)(Vì \(\sqrt{3}>\sqrt{2}>0\))
\(=-3-\sqrt{6}\)
e) Ta có: \(\sqrt{2-\sqrt{3}}\cdot\left(\sqrt{6}-\sqrt{2}\right)\cdot\left(2+\sqrt{3}\right)\)
\(=\sqrt{2}\cdot\sqrt{2-\sqrt{3}}\cdot\left(\sqrt{3}-1\right)\cdot\left(2+\sqrt{3}\right)\)
\(=\sqrt{4-2\sqrt{3}}\cdot\left(\sqrt{3}-1\right)\cdot\left(\sqrt{3}+2\right)\)
\(=\sqrt{3-2\cdot\sqrt{3}\cdot1+1}\cdot\left(\sqrt{3}-1\right)\cdot\left(\sqrt{3}+2\right)\)
\(=\sqrt{\left(\sqrt{3}-1\right)^2}\cdot\left(\sqrt{3}-1\right)\cdot\left(\sqrt{3}+2\right)\)
\(=\left|\sqrt{3}-1\right|\cdot\left(\sqrt{3}-1\right)\cdot\left(\sqrt{3}+2\right)\)
\(=\left(\sqrt{3}-1\right)\left(\sqrt{3}-1\right)\left(\sqrt{3}+2\right)\)(Vì \(\sqrt{3}>1\))
\(=\frac{\left(4-2\sqrt{3}\right)\left(4+2\sqrt{3}\right)}{2}\)
\(=\frac{16-12}{2}=\frac{4}{2}=2\)
f) Ta có: \(\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{7+4\sqrt{3}}}}}\)
\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{4+2\cdot2\cdot\sqrt{3}+3}}}}\)
\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{\left(2+\sqrt{3}\right)^2}}}}\)
\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\left|2+\sqrt{3}\right|}}}\)
\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\left(2+\sqrt{3}\right)}}}\)(Vì \(2>\sqrt{3}>0\))
\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-20-10\sqrt{3}}}}\)
\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{28-10\sqrt{3}}}}\)
\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{25-2\cdot5\cdot\sqrt{3}+3}}}\)
\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{\left(5-\sqrt{3}\right)^2}}}\)
\(=\sqrt{4+\sqrt{5\sqrt{3}+5\left|5-\sqrt{3}\right|}}\)
\(=\sqrt{4+\sqrt{5\sqrt{3}+5\left(5-\sqrt{3}\right)}}\)(Vì \(5>\sqrt{3}\))
\(=\sqrt{4+\sqrt{5\sqrt{3}+25-5\sqrt{3}}}\)
\(=\sqrt{4+\sqrt{25}}\)
\(=\sqrt{4+5}=\sqrt{9}=3\)
\(\left(6\right)\dfrac{3\sqrt{x}}{5\sqrt{x}-1}\le-3\)
\(\left(7\right)\dfrac{8\sqrt{x}+8}{6\sqrt{x}+9}>\dfrac{8}{3}\)
\(\left(8\right)\dfrac{\sqrt{x}-2}{2\sqrt{x}-3}< -4\)
\(\left(9\right)\dfrac{4\sqrt{x}+6}{5\sqrt{x}+7}\le-\dfrac{2}{3}\)
\(\left(10\right)\dfrac{6\sqrt{x}-2}{7\sqrt{x}-1}>-6\)
6:ĐKXĐ: x>=0; x<>1/25
BPT=>\(\dfrac{3\sqrt{x}}{5\sqrt{x}-1}+3< =0\)
=>\(\dfrac{3\sqrt{x}+15\sqrt{x}-5}{5\sqrt{x}-1}< =0\)
=>\(\dfrac{18\sqrt{x}-5}{5\sqrt{x}-1}< =0\)
=>\(\dfrac{1}{5}< \sqrt{x}< =\dfrac{5}{18}\)
=>\(\dfrac{1}{25}< x< =\dfrac{25}{324}\)
7:
ĐKXĐ: x>=0
BPT \(\Leftrightarrow\dfrac{\sqrt{x}+1}{2\sqrt{x}+3}>\dfrac{8}{3}:\dfrac{8}{3}=1\)
=>\(\dfrac{\sqrt{x}+1}{2\sqrt{x}+3}-1>=0\)
=>\(\dfrac{\sqrt{x}+1-2\sqrt{x}-3}{2\sqrt{x}+3}>=0\)
=>\(-\sqrt{x}-2>=0\)(vô lý)
8:
ĐKXĐ: x>=0; x<>9/4
BPT \(\Leftrightarrow\dfrac{\sqrt{x}-2}{2\sqrt{x}-3}+4< 0\)
=>\(\dfrac{\sqrt{x}-2+8\sqrt{x}-12}{2\sqrt{x}-3}< 0\)
=>\(\dfrac{9\sqrt{x}-14}{2\sqrt{x}-3}< 0\)
TH1: 9căn x-14>0 và 2căn x-3<0
=>căn x>14/9 và căn x<3/2
=>14/9<căn x<3/2
=>196/81<x<9/4
TH2: 9căn x-14<0 và 2căn x-3>0
=>căn x>3/2 hoặc căn x<14/9
mà 3/2<14/9
nên trường hợp này Loại
9:
ĐKXĐ: x>=0
\(BPT\Leftrightarrow\dfrac{2\sqrt{x}+3}{5\sqrt{x}+7}< =-\dfrac{1}{3}\)
=>\(\dfrac{2\sqrt{x}+3}{5\sqrt{x}+7}+\dfrac{1}{3}< =0\)
=>\(\dfrac{6\sqrt{x}+9+5\sqrt{x}+7}{3\left(5\sqrt{x}+7\right)}< =0\)
=>\(\dfrac{11\sqrt{x}+16}{3\left(5\sqrt{x}+7\right)}< =0\)(vô lý)
10:
ĐKXĐ: x>=0; x<>1/49
\(BPT\Leftrightarrow\dfrac{6\sqrt{x}-2}{7\sqrt{x}-1}+6>0\)
=>\(\dfrac{6\sqrt{x}-2+42\sqrt{x}-6}{7\sqrt{x}-1}>0\)
=>\(\dfrac{48\sqrt{x}-8}{7\sqrt{x}-1}>0\)
=>\(\dfrac{6\sqrt{x}-1}{7\sqrt{x}-1}>0\)
TH1: 6căn x-1>0 và 7căn x-1>0
=>căn x>1/6 và căn x>1/7
=>căn x>1/6
=>x>1/36
TH2: 6căn x-1<0 và 7căn x-1<0
=>căn x<1/6 và căn x<1/7
=>căn x<1/7
=>0<=x<1/49