Phân tích các đa thức sau thành nhân tử:
a) (a + b)2 – m2 + a + b – m
b) x3 + 6x2 + 12x – 8
c) x2 – 7xy + 10y2
d) x4 + 2x3 - 4x – 4
Bài 1: Phân tích đa thức thành nhân tử:
a) x2y+xy+x+1
b) x2-(a+b)x+ab
c) ax2+ay-bx2-by
d) ax-2x-a2+2a
e) 2x2+4ax+x+2a
f) x3+ax2+x+a
g) x4+2x3-4x-4
a) x2y+xy+x+1= (x2y+xy)+(x+1)=xy(x+10+(x+1)=(x+1)(xy+1)
b) x2-(a+b)x+ab=x2-ax-bx+ab=(x2-ax)-(bx-ab)=x(x-a)-b(x-a)=(x-a)(x-b)
c) ax2+ay-bx2-by=(ax2+ay)-(bx2+by)=a(x2+y)-b(x2+y)=(a-b)(x2+y)
d) ax-2x-a2+2a=(ax-2x)-(a2-2a)=x(a-2)-a(a-2)=(a-2)(x-a)
e) 2x2+4ax+x+2a=(2x2+4ax)+(x+2a)=2x(x+2a)+(x+2a)=(x+2a)(2x+1)
f) x3+ax2+x+a=(x3+ax2)+(x+a)=x2(x+a)+(x+a)=(x2+1)(x+a)
g: Ta có: \(x^4+2x^3-4x-4\)
\(=\left(x^2-2\right)\left(x^2+2\right)-2x\left(x^2-2\right)\)
\(=\left(x^2-2\right)\cdot\left(x^2+2x+2\right)\)
Phân tích đa thức thành nhân tử:
a)10x2y-5xy2+15xyz
b)x3-x2-4x+4
c)x3-6x2+9x
\(a,=5xy\left(2x-y+3z\right)\\ b,=x^2\left(x-1\right)-4\left(x-1\right)=\left(x-2\right)\left(x+2\right)\left(x-1\right)\\ c,=x\left(x^2-6x+9\right)=x\left(x-3\right)^2\)
1. Làm tính nhân: 6x2( x3+ xy - \(\dfrac{3}{2}\))
2. a) (2x3- 3x2+ 4x- 3) : (x - 1)
b) Tính giá trị biểu thức: (683 - 323) : 18 + 62.64
3. Phân tích đa thức thành nhân tử:
a) 8x3 - 125
b) \(\dfrac{2}{5}\)xy3 - \(\dfrac{2}{5}\)x3y + 4x2y - 10xy
Giúp mình với ạ --- <33
Bài 3:
a: \(=\left(2x-5\right)\left(4x^2+10x+25\right)\)
Phân tích đa thức thành nhân tử:
a.10x2y – 20xy2 b. x2 – y2 + 10y – 25 c. x2 – y2 + 3x – 3y
d. x3 + 3x2 – 16x – 48 e. 9x3 + 6x2 + x f. x4 + 5x3 + 15x – 9
\(a,10x^2y-20xy^2=10xy\left(x-2y\right)\\ b,x^2-y^2+10y-25=x^2-\left(y^2-10y+25\right)=x^2-\left(y-5\right)^2=\left(x-y+5\right)\left(x+y-5\right)\\ c,x^2-y^2+3x-3y=\left(x-y\right)\left(x+y\right)+3\left(x-y\right)=\left(x-y\right)\left(x+y+3\right)\\ d,x^3+3x^2-16x-48=\left(x^3+3x^2\right)-\left(16x+48\right)=x^2\left(x+3\right)-16\left(x+3\right)=\left(x+3\right)\left(x^2-16\right)=\left(x+3\right)\left(x+4\right)\left(x-4\right)\)
\(e,9x^3+6x^2+x=x\left(9x^2+6x+1\right)=x\left(3x+1\right)^2\\ f,x^4+5x^3+15x-9=\left(x^4+5x^3-3x^2\right)+\left(3x^2+15x-9\right)=x^2\left(x^2+5x-3\right)+3\left(x^2+5x-3\right)=\left(x^2+3\right)\left(x^2+5x-3\right)\)
Bài 1:Phân tích đa thức thành nhân tử:
a) x3y+x-y-1
b) x2.(x-2)+4.(2-x)
c) x3-x2-20x
d) (x2+1)2-(x+1)2
e) 6x2-7x+2
f) x4+8x2+12
g) (x3+x+1).(x3+x)-2
h) (x+1).(x+2).(x+3).(x+4)-1
i) -(x2+2)2+4x.(x2+2)-3x2
j) -(x2+2)2+4x.(x2+2).3x2
k) -(x2+2)2+4x.(x2+2)+3x2
l) 81x4+4y4
Giúp với ạa
a) x³y + x - y - 1
= (x³y - y) + (x - 1)
= y(x³ - 1) + (x - 1)
= y(x - 1)(x² + x + 1) + (x - 1)
= (x - 1)[y(x² + x + 1) + 1]
= (x - 1)(x²y + xy + y + 1)
b) x²(x - 2) + 4(2 - x)
= x²(x - 2) - 4(x - 2)
= (x - 2)(x² - 4)
= (x - 2)(x - 2)(x + 2)
= (x - 2)²(x + 2)
c) x³ - x² - 20x
= x(x² - x - 20)
= x(x² + 4x - 5x - 20)
= x[(x² + 4x) - (5x + 20)]
= x[x(x + 4) - 5(x + 4)]
= x(x + 4)(x - 5)
d) (x² + 1)² - (x + 1)²
= (x² + 1 - x - 1)(x² + 1 + x + 1)
= (x² - x)(x² + x + 2)
= x(x - 1)(x² + x + 2)
e) 6x² - 7x + 2
= 6x² - 3x - 4x + 2
= (6x² - 3x) - (4x - 2)
= 3x(2x - 1) - 2(2x - 1)
= (2x - 1)(3x - 2)
f) x⁴ + 8x² + 12
= x⁴ + 2x² + 6x² + 12
= (x⁴ + 2x²) + (6x² + 12)
= x²(x² + 2) + 6(x² + 2)
= (x² + 2)(x² + 6)
g) (x³ + x + 1)(x³ + x) - 2
Đặt u = x³ + x
x³ + x + 1 = u + 1
(u + 1).u - 2
= u² + u - 2
= u² - u + 2u - 2
= (u² - u) + (2u - 2)
= u(u - 1) + 2(u - 1)
= (u - 1)(u + 2)
= (x³ + x - 1)(x³ + x + 2)
= (x³ + x - 1)(x³ + x² - x² - x + 2x + 2)
= (x³ + x - 1)[(x³ + x²) - (x² + x) + (2x + 2)]
= (x³ + x - 1)[x²(x + 1) - x(x + 1) + 2(x + 1)]
= (x³ + x - 1)(x - 1)(x² - x + 2)
h) (x + 1)(x + 2)(x + 3)(x + 4) - 1
= [(x + 1)(x + 4)][(x + 2)(x + 3)] - 1
= (x² + 5x + 4)(x² + 5x + 6) - 1 (1)
Đặt u = x² + 5x + 4
u + 2 = x² + 5x + 6
(1) u.(u + 2) - 1
= u² + 2u - 1
= u² + 2u + 1 - 2
= (u² + 2u + 1) - 2
= (u + 1)² - 2
= (u + 1 + √2)(u + 1 - √2)
= (x² + 5x + 4 + 1 + √2)(x² + 5x + 4 + 1 - √2)
= (x² + 5x + 5 + √2)(x² + 5x + 5 - √2)
i: \(-\left(x^2+2\right)^2+4x\left(x^2+2\right)-3x^2\)
\(=-\left[\left(x^2+2\right)^2-4x\left(x^2+2\right)+3x^2\right]\)
\(=-\left[\left(x^2+2\right)^2-x\left(x^2+2\right)-3x\left(x^2+2\right)+3x^2\right]\)
\(=-\left[\left(x^2+2\right)\left(x^2+2-x\right)-3x\left(x^2+2-x\right)\right]\)
\(=-\left(x^2+2-x\right)\left(x^2-3x+2\right)\)
\(=-\left(x+2\right)\left(x-1\right)\left(x-2\right)\left(x-1\right)\)
\(=-\left(x+2\right)\left(x-2\right)\left(x-1\right)^2\)
l: \(81x^4+4y^4\)
\(=81x^4+36x^2y^2+4y^4-36x^2y^2\)
\(=\left(81x^4+36x^2y^2+4y^4\right)-\left(6xy\right)^2\)
\(=\left[\left(9x^2\right)^2+2\cdot9x^2\cdot2y^2+\left(2y^2\right)^2\right]-\left(6xy\right)^2\)
\(=\left(9x^2+2y^2\right)^2-\left(6xy\right)^2\)
\(=\left(9x^2+2y^2+6xy\right)\left(9x^2+2y^2-6xy\right)\)
Phân tích các đa thức sau thành nhân tử:
a) x3 – 2x2y + xy2
b) x2 + 12x + 20
c) (x2 + x + 1)(x2 + x + 4) + 2
a) \(=x\left(x^2-2xy+y^2\right)=x\left(x-y\right)^2\)
b) \(=\left(x^2+2x\right)+\left(10x+20\right)=x\left(x+2\right)+10\left(x+2\right)=\left(x+2\right)\left(x+10\right)\)
c) đặt \(x^2+x+1=t\)
\(\left(x^2+x+1\right)\left(x^2+x+4\right)+2=t\left(t+3\right)+2=t^2+3t+2=\left(t^2+t\right)+\left(2t+2\right)=t\left(t+1\right)+2\left(t+1\right)=\left(t+1\right)\left(t+2\right)=\left(x^2+x+2\right)\left(x^2+x+3\right)\)
Phân tích các đa thức sau thành nhân tử:
1) x3 - 7x + 6
2) x3 - 9x2 + 6x + 16
3) x3 - 6x2 - x + 30
4) 2x3 - x2 + 5x + 3
5) 27x3 - 27x2 + 18x - 4
6) x2 + 2xy + y2 - x - y - 12
7) (x + 2)(x +3)(x + 4)(x + 5) - 24
8) 4x4 - 32x2 + 1
9) 3(x4 + x2 + 1) - (x2 + x + 1)2
10) 64x4 + y4
11) a6 + a4 + a2b2 + b4 - b6
12) x3 + 3xy + y3 - 1
13) 4x4 + 4x3 + 5x2 + 2x + 1
14) x8 + x + 1
15) x8 + 3x4 + 4
16) 3x2 + 22xy + 11x + 37y + 7y2 +10
17) x4 - 8x + 63
Chia nhỏ ra cậu ơi :v
Cậu đặt câu hỏi free nên đặt nhỏ ra thì mới có người làm nha để như này dày cộp không ai dám làm đou =(((
Phân tích các đa thức sau thành nhân tử:
a) 3x - 3y + x 2 - y 2 ; b) x 2 -4 x 2 y 2 + y 2 + 2xy
c) x 6 - x 4 + 2 x 3 + 2 x 2 ; d) x 3 - 3x 2 +3x - 1 - y 3 .
a) (x - y)(x + y + 3). b) (x + y - 2xy)(2 + y + 2xy).
c) x 2 (x + l)( x 3 - x 2 + 2). d) (x – 1 - y)[ ( x - 1 ) 2 + ( x - 1 ) y + y 2 ].
Phân tích các đa thức sau thành nhân tử:
a/ x2 – 3x – 4xy + 12y b/ x3 – 4x2 + 4x -1
c/ x – y – ax + ay d/ x2 – 4 + ( x + 2)2
e/x3 + x2y – x2z – xyz f/ x2 – y2 – 2x – 2y
a: \(=x\left(x-3\right)-4y\left(x-3\right)\)
=(x-3)(x-4y)
d: \(=\left(x-2\right)\left(x+2\right)+\left(x+2\right)^2\)
\(=\left(x+2\right)\left(x-2+x+2\right)\)
=2x(x+2)
\(a,=x\left(x-3\right)-4y\left(x-3\right)=\left(x-4y\right)\left(x-3\right)\\ b,=\left(x-1\right)\left(x^2+x+1\right)-4x\left(x-1\right)=\left(x-1\right)\left(x^2-3x+1\right)\\ c,=\left(x-y\right)\left(1-a\right)\\ d,=\left(x-2\right)\left(x-2+x+2\right)=2x\left(x-2\right)\\ e,=x^2\left(x+y\right)-xz\left(x+y\right)=x\left(x-z\right)\left(x+y\right)\\ f,=\left(x-y-2\right)\left(x+y\right)\)