Tính
36(x-y)^2-25(2x-1)^2
1.Viết dưới dạng lũy thừa
a/2.3.2.3.2.3
b/100.100.100
c/2x.2x.2x
d/2.23.25
e/310.35.34
2/Tìm x
a/40-x=26.22
b/32.3x=81
c/2x=512
d/x5=243
3/tính
36=
83=
33.75+3325=
d/23.3-(110+8):3=
e/32-[4+(5.32 - 42)] -14
giúp mình zới
Bài 1:
a) \(2\cdot3\cdot2\cdot3\cdot2\cdot3=2^3\cdot3^3=6^3\)
b) \(100\cdot100\cdot100=100^3=\left(10^2\right)^3=10^6\)
c) \(2x\cdot2x\cdot2x=\left(2x\right)^3=8x^3\)
d) \(2\cdot2^3\cdot2^5=2^{1+3+5}=2^9\)
e) \(3^{10}\cdot3^5\cdot3^4=3^{10+5+4}=3^{19}\)
Bài 2:
\(40-x=2^6\cdot2^2\)
\(\Rightarrow40-x=2^8\)
\(\Rightarrow40-x=256\)
\(\Rightarrow x=40-256\)
\(\Rightarrow x=-216\)
b) \(3^2\cdot3^x=81\)
\(\Rightarrow3^{2+x}=3^4\)
\(\Rightarrow2+x=4\)
\(\Rightarrow x=4-2=2\)
c) \(2^x=512\)
\(\Rightarrow2^x=2^9\)
\(\Rightarrow x=9\)
d) \(x^5=243\)
\(\Rightarrow x^5=3^5\)
\(\Rightarrow x=3\)
Bài 3:
a) \(3^6=3\cdot3\cdot3\cdot3\cdot3\cdot3=729\)
b) \(8^3=\left(2^3\right)^3=2^9=512\)
c) \(3^3\cdot75+3^3\cdot25=3^3\cdot\left(75+25\right)=3^3\cdot100=27\cdot100=2700\)
d) \(2^3\cdot3-\left(1^{10}+8\right):3=2^3\cdot3-9:3=2^3\cdot3-3\cdot3:3=3\cdot\left(2^3-3:3\right)=3\cdot\left(8-1\right)=21\)
e) \(32-\left[4+\left(5\cdot3^2-42\right)\right]-14=18-\left[4+\left(45-42\right)\right]\)
\(=18-\left(4+3\right)\)
\(=18-7=11\)
2:
a: =>40-x=256
=>x=40-256=-216
b: =>x+2=4
=>x=2
c: =>2^x=2^9
=>x=9
d; =>x^5=3^5
=>x=3
|x+25|+|−y+5|=0
⇒|x+25|=0 và |−y+5|=0
+) |x+25|=0
⇒x+25=0
⇒x=−25
+) |−y+5|=0
⇒−y+5=0
⇒−y=−5
⇒y=5
Vậy cặp số (x;y) là (−25;5)
Những câu b-f thì chia ra làm 2 vế rồi tính
g thì tìm ước rồi lập bảng trường hợp trong ước
h. (2x−1).(4y−2)=−42(2x−1).(4y−2)=−42
⇒{2x−1∈Ư(−42)4y−2∈Ư(−42)⇒{2x−1∈Ư(−42)4y−2∈Ư(−42)
Mà: Ư(−42)∈{±1;±2;±3;±6;±7;±21;±42}Ư(−42)∈{±1;±2;±3;±6;±7;±21;±42}
Ta có một số trường hợp sau :
2x−12x−1 | 1 | -1 | 2 | -2 | 3 | -3 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
(4y−2)=2(2y−1)(4y−2)=2(2y−1) | -1 | 1 | -2 | 2 | -|x+25|+|−y+5|=0 ⇒|x+25|=0 và |−y+5|=0 +) |x+25|=0 ⇒x+25=0 ⇒x=−25 +) |−y+5|=0 ⇒−y+5=0 ⇒−y=−5 ⇒y=5 Vậy cặp số (x;y) là (−25;5)
Những câu b-f thì chia ra làm 2 vế rồi tính g thì tìm ước rồi lập bảng trường hợp trong ước
h. (2x−1).(4y−2)=−42(2x−1).(4y−2)=−42 ⇒{2x−1∈Ư(−42)4y−2∈Ư(−42)⇒{2x−1∈Ư(−42)4y−2∈Ư(−42) Mà: Ư(−42)∈{±1;±2;±3;±6;±7;±21;±42}Ư(−42)∈{±1;±2;±3;±6;±7;±21;±42} Ta có một số trường hợp sau :
|
x mũ 2 + x mũ 2 . y - y - 1
x mũ 2 + y mũ 2 - 2xy - 25
( 2x - 1 ) ( x mũ 2 + 2x - 1) - ( 1 - 2x ) (x - 3)
a mũ 2 + x mũ 2 -16 + 2ax
1) x2 + x2y - y - 1
= x2( 1 + y ) - ( 1 + y )
= ( 1 + y )( x2 - 1 )
= ( 1 + y )( x - 1 )( x + 1 )
2) x2 + y2 - 2xy - 25
= ( x2 - 2xy + y2 ) - 25
= ( x - y )2 - 52
= ( x - y - 5 )( x - y + 5 )
3) ( 2x - 1 )( x2 + 2x - 1 ) - ( 1 - 2x )( x - 3 )
= ( 2x - 1 )( x2 + 2x - 1 ) + ( 2x - 1 )( x - 3 )
= ( 2x - 1 )( x2 + 2x - 1 + x - 3 )
= ( 2x - 1 )( x2 + 3x - 4 )
= ( 2x - 1 )( x2 - x + 4x - 4 )
= ( 2x - 1 )[ x( x - 1 ) + 4( x - 1 ) ]
= ( 2x - 1 )( x - 1 )( x + 4 )
4) a2 + x2 - 16 + 2ax
= ( a2 + 2ax + x2 ) - 16
= ( a + x )2 - 42
= ( a + x - 4 )( a + x + 4 )
tìm điều kiện bài toán:
a) \(y=\dfrac{1}{x}-\dfrac{\sqrt{2x-1}}{x^2-3x+2}\)
b) \(y=\dfrac{1}{x^2-1}-\sqrt{7-2x}\)
c) \(y=\dfrac{2}{x}+\dfrac{3}{4-2x+x^2}\)
d) \(y=\sqrt{25-x^2}-2\sqrt{x}+3\)
Lời giải:
a.
\(\left\{\begin{matrix} x\neq 0\\ 2x-1\geq 0\\ x^2-3x+2=(x-1)(x-2)\neq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\neq 0\\ x\geq \frac{1}{2}\\ x\neq 1; x\neq 2\end{matrix}\right.\)
$\Leftrightarrow x\geq \frac{1}{2}; x\neq 1; x\neq 2$
b. \(\left\{\begin{matrix}
x^2-1=(x-1)(x+1)\neq 0\\
7-2x\geq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix}
x\neq \pm 1\\
x\leq \frac{7}{2}\end{matrix}\right.\)
c.
\(\left\{\begin{matrix} x\neq 0\\ 4-2x+x^2\neq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\neq 0\\ (x-1)^2+3\neq 0\end{matrix}\right.\Leftrightarrow x\neq 0\)
d.
\(\left\{\begin{matrix} 25-x^2=(5-x)(5+x)\geq 0\\ x\geq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} -5\leq x\leq 5\\ x\geq 0\end{matrix}\right.\Leftrightarrow 0\leq x\leq 5\)
a) \(y=\dfrac{1}{x}-\dfrac{\sqrt[]{2x-1}}{x^2-3x+2}\)
Điều kiện \(\) \(2x-1\ge0;x\ne0;x^2-3x+2\ne0\)
\(\Leftrightarrow x\ge\dfrac{1}{2};x\ne0;\left(x-1\right)\left(x-2\right)\ne0\)
\(\Leftrightarrow x\ge\dfrac{1}{2};x\ne0;x\ne1;x\ne2\)
a) \(x\ge\dfrac{1}{2};x\ne1;x\ne2\)
b) \(x\le\dfrac{7}{2};x\ne\pm1\)
c) \(x\ne0\)
d) \(0\le x\le5\)
2)x^2-2xy+y^2-2x+2y
3)3x^2-2x-5
4)16-x^2+4xy-4x^2
5)x^2-2x+1-y^2
6)x^2+8x+15
Giúp mik vs cần gấp!!!!
\(2,=\left(x-y\right)^2-2\left(x-y\right)=\left(x-y\right)\left(x-y-2\right)\\ 3,=\left(3x-5\right)\left(x+1\right)\\ 4,sai.đề\\ 5,=\left(x-1\right)^2-y^2=\left(x-y-1\right)\left(x+y-1\right)\\ 6,=\left(x+3\right)\left(x+5\right)\)
Tìm x
A) 2x(x-5)-x(2x+3)=25
B) (3y^2-y+1)(y-1)+y^2(4-3y)=5/2
C) 2x^2 +3( x-1)( x+1)= 5x(×+1)
a, \(2x\left(x-5\right)-x\left(2x+3\right)=25\)
\(\Rightarrow2x^2-10x-2x^2-3x=25\)
\(\Rightarrow-13x=25\Rightarrow x=\dfrac{-25}{13}\)
b, \(\left(3y^2-y+1\right)\left(y-1\right)+y^2\left(4-3y\right)=\dfrac{5}{2}\)
\(\Rightarrow3y^3-y^2+y-3y^2+y-1+4y^2-3y^3=\dfrac{5}{2}\)
\(\Rightarrow2y-1=\dfrac{5}{2}\Rightarrow2y=\dfrac{7}{2}\Rightarrow y=\dfrac{7}{4}\)
c, \(2x^2+3\left(x-1\right)\left(x+1\right)=5x\left(x+1\right)\)
\(\Rightarrow2x^2+3\left(x^2+x-x-1\right)=5x^2+5x\)
\(\Rightarrow2x^2+3x^2-3=5x^2+5x\)
\(\Rightarrow-5x=3\Rightarrow x=\dfrac{-3}{5}\)
Rút gọn phân thức.
y(2x-x)^2 trên x(2y+y^2) b)(2x+3)(3x-5) trên 25-9x^2 c) 2x^5y^3 trên 3x^3y^2. D) x^2+2x+1 trên x^2-1
https://www.youtube.com/watch?v=cFZDEMTQQCs
Câu 1:
a) -2x-(x-17)=34-(-x+25)
b) 17x-(-16x-27)=2x+43
c) -2x-3(x-17)=34-2(-x+25)
d) 17x+3(-16x-37)=2x+43-4x
e) 3x-32>-5x+1
f)15+4x<2x-145
g)-3(2x+5)-16<-4(3-2x)
h) -2x+15<3x-7<19-x
i)x+(x+1)+(x+2)+(x+3)+....+13+14=14
j)25+24+23+...+x+(x-2)+(x-3)=25
Câu 2:
a) (x-3).(y+5)=-17
b) (x+1).(xy-2)=11
c) xy-7x+y=-22
d) xy-3x+y=-20
Câu 1:
a: =>-2x-x+17=34+x-25
=>-3x+17=x+9
=>-4x=-8
hay x=2
b: =>17x+16x+27=2x+43
=>33x+27=2x+43
=>31x=16
hay x=16/31
c: =>-2x-3x+51=34+2x-50
=>-5x+51=2x-16
=>-7x=-67
hay x=67/7
e: 3x-32>-5x+1
=>8x>33
hay x>33/8
Tìm x:
x^2-2x+1=25
(5-2x)^2-16=0
(x+2)^2-9=0
(x+3)^2+2(x+3)(x-2)+(x-2)^2=25
Tính giá trị biểu thức sau:
2x^2-30+9 với x=2
x^2-y^2 với x=789,y=211
a,\(x^2-2x+1=25\)
\(\Rightarrow\left(x-1\right)^2=25\)
\(\Rightarrow x-1=\orbr{\begin{cases}-5\\5\end{cases}}\)
\(\Rightarrow x=\orbr{\begin{cases}-4\\6\end{cases}}\)
b,\(\left(5-2x\right)^2-16=0\)
\(\Rightarrow\left(5-2x-4\right)\left(5-2x+4\right)=0\)
\(\Rightarrow-\left(1+2x\right)\left(9-2x\right)=0\)
\(\Rightarrow\orbr{\begin{cases}1+2x=0\\9-2x=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=-\frac{1}{2}\\x=\frac{9}{2}\end{cases}}\)
Đặt là a, b, c... nhé
\(a)\) \(x^2-2x+1=25\)
\(\Leftrightarrow\)\(\left(x-1\right)^2=5^2\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x-1=5\\x-1=-5\end{cases}\Leftrightarrow\orbr{\begin{cases}x=6\\x=-4\end{cases}}}\)
Vậy \(x=-4\) hoặc \(x=6\)
\(b)\) \(\left(5-2x\right)^2-16=0\)
\(\Leftrightarrow\)\(\left(5-2x\right)^2-4^2=0\)
\(\Leftrightarrow\)\(\left(5-2x-4\right)\left(5-2x+4\right)=0\)
\(\Leftrightarrow\)\(\left(1-2x\right)\left(9-2x\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}1-2x=0\\9-2x=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{2}\\x=\frac{9}{2}\end{cases}}}\)
Vậy \(x=\frac{1}{2}\) hoặc \(x=\frac{9}{2}\)
\(c)\) \(\left(x+2\right)^2-9=0\)
\(\Leftrightarrow\)\(\left(x+2\right)^2-3^2=0\)
\(\Leftrightarrow\)\(\left(x+2-3\right)\left(x+2+3\right)=0\)
\(\Leftrightarrow\)\(\left(x-1\right)\left(x+5\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x-1=0\\x+5=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\\x=-5\end{cases}}}\)
Vậy \(x=1\) hoặc \(x=-5\)
Chúc bạn học tốt ~
Giải tiếp nè
\(c)\) \(\left(x+3\right)^2+2\left(x+3\right)\left(x-2\right)+\left(x-2\right)^2=25\)
\(\Leftrightarrow\)\(\left(x+3+x-2\right)^2=5^2\)
\(\Leftrightarrow\)\(\left(2x+1\right)^2=5^2\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}2x+1=5\\2x+1=-5\end{cases}\Leftrightarrow\orbr{\begin{cases}x=2\\x=-3\end{cases}}}\)
Vậy \(x=2\) hoặc \(x=-3\)
* Tính giá trị của biểu thức :
\(a)\) \(2x^2-30+9\)
Thay \(x=2\) vào biểu thức trên ta được :
\(2.2^2-30+9=2^3-21=8-21=-13\)
\(b)\) Ta có :
\(x^2-y^2=\left(x-y\right)\left(x+y\right)\)
Thay \(x=789\) và \(y=211\) vào \(\left(x-y\right)\left(x+y\right)\) ta được :
\(\left(789-211\right)\left(789+211\right)=578.1000=578000\)
Chúc bạn học tốt ~
a, Cho `0<x<25`
Tìm GTLN:`(80-2x)(50-2x)x`
b, `0<x<2`. Tìm GTLN: `5x(2-x)`
c, `x≥2`. Tìm GTLN: `x + 1/x`
d, Cho `x,y>0, x+y≤1`. TÌm GTNN: `x + y + 1/x + 1/y`
d. Áp dụng BĐT Caushy Schwartz ta có:
\(x+y+\dfrac{1}{x}+\dfrac{1}{y}\le x+y+\dfrac{\left(1+1\right)^2}{x+y}=x+y+\dfrac{4}{x+y}\le1+\dfrac{4}{1}=5\)
-Dấu bằng xảy ra \(\Leftrightarrow x=y=\dfrac{1}{2}\)
c. Bạn kiểm tra lại đề nhé.
b. \(5x\left(2-x\right)=-5x\left(x-2\right)=-5\left(x^2-2x\right)=-5\left(x^2-2x+1-1\right)=-5\left(x-1\right)^2+5\le5\)-Dấu bằng xảy ra \(\Leftrightarrow x=1\)
a.
\(\left(80-2x\right)\left(50-2x\right)x=\dfrac{2}{3}\left(40-x\right)\left(50-2x\right)3x\le\dfrac{2}{3}\left(\dfrac{40-x+50-2x+3x}{3}\right)^3=18000\)
Dấu "=" xảy ra khi \(40-x=50-2x=3x\Leftrightarrow x=10\)
b.
\(5x\left(2-x\right)=5.x\left(2-x\right)\le\dfrac{5}{4}\left(x+2-x\right)^2=5\)
Dấu "=" xảy ra khi \(x=2-x\Rightarrow x=1\)
c.
Biểu thức này chỉ có min, ko có max
d.
\(x+y\le1\Rightarrow-\left(x+y\right)\ge-1\)
\(x+y+\dfrac{1}{x}+\dfrac{1}{y}=\left(4x+\dfrac{1}{x}\right)+\left(4y+\dfrac{1}{y}\right)-3\left(x+y\right)\ge2\sqrt{\dfrac{4x}{x}}+2\sqrt{\dfrac{4y}{y}}-3.1=5\)
Dấu "=" xảy ra khi \(x=y=\dfrac{1}{2}\)