Tam giác ABC vuông ở A, đường cao AH. Biết HB = 25cm, HC = 64cm. Tính góc B và góc C.
1. Cho tam giác ABC vuông tại A, đường cao AH. Biết HB= 25cm, HC= 64cm. Tính AH, AC, góc B và góc C
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(\left\{{}\begin{matrix}AH^2=HB\cdot HC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AH=40cm\\AC=8\sqrt{89}cm\end{matrix}\right.\)
Xét ΔACH vuông tại H có
\(\sin\widehat{C}=\dfrac{AH}{AC}=\dfrac{5}{\sqrt{89}}\)
\(\Leftrightarrow\widehat{C}\simeq32^0\)
hay \(\widehat{B}=58^0\)
Cho tam giác ABC vuông tại A, đường cao AH. Biết HB = 25cm, HC = 64cm. Tính góc B , C
Theo hệ thức liên hệ giữa đường cao và hình chiếu, ta có:
A H 2 = H B . H C
Suy ra:
Cho tam giác ABC có góc A = 90 độ , đường cao AH
Biết BH = 25cm , HC = 64cm . Tính góc B , góc C
Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC
nên \(AH^2=HB\cdot HC\)
hay AH=40(cm)
Xét ΔABH vuông tại H có
\(\tan\widehat{B}=\dfrac{AH}{HB}=\dfrac{40}{25}=\dfrac{8}{5}\)
\(\Leftrightarrow\widehat{B}\simeq58^0\)
hay \(\widehat{C}=32^0\)
Bài 1: Cho tam giác ABC vuông tại A giải Tam giác ABC biết: a) Góc B= 35 độ, BC=40 cm
b) AB=70cm, AC=60cm
c) AB=6cm, góc B=60 độ
d) AB=5cm, AC=7cm
2) Cho tam giác ABC góc A =90 độ đường cao AH biết HB=25cm, HC =64cm tín số đo góc B và C
3)Tam giác ABC có góc A =90 độ, AB=21cm, ggos C =40 độ tính độ dài đường phân giác BD
4) Tam giác ABC có góc B=70 độ góc C=35 độ đường cao AH=5cm tính độ dài AB,AC,B
Tam giác ABC vuông tại A ; đường cao AH; biết HB = 25cm; HC = 64 cm. Tính góc B
A. 42 °
B. 32 °
C. 58 o
D. 51 o
Đáp án C
Ta có: BC = HB + HC = 25 + 64 = 89 cm
Áp dụng hệ thức về cạnh và đường cao trong tam giác vuông ta có:
Cho tam giácABC vuông tại A, đường cao AH. Cho HB = 25cm, HC = 64cm. a) Tính chu vi và diện tích tam giác ABC b) Tính góc B, góc C c) Kẻ HM vuông góc AB, HN vuông góc AC. Tính MN
a: BC=25+64=89cm
AH=căn 25*64=40cm
S ABC=1/2*40*89=1780cm2
AB=căn 25*89=5căn 89cm
AC=căn 64*89=8 căn 89
=>C=13căn 89+89(cm)
b: tan B=AC/AB=8/5
=>góc B=58 độ
=>góc C=32 độ
c:
góc AMH=góc ANH=góc MAN=90 độ nên AMHN là hcn
=>MN=AH=40cm
Cho tam giác ABC vuông tại A, đường cao AH, biết HB = 9; HC = 16. Tính góc B và góc C.
A. B ^ = 53 0 8 ' ; C ^ = 36 0 52 '
B. B ^ = 36 0 52 ' ; C ^ = 53 0 8 '
C. B ^ = 48 0 35 ' ; C ^ = 41 0 25 '
D. B ^ = 41 0 25 ' ; C ^ = 48 0 35 '
Ta có: BC = BH + CH = 9 + 16 = 25
Áp dụng hệ thức lượng cho ABC vuông tại A có đường cao AH ta có:
Xét ABC vuông tại A ta có:
Đáp án cần chọn là: A
Cho tam giác ABC vuông tại A , đường cao Ah .Biết HB = 25 cm, hc=64 cm .Tính góc B và góc C cua tam giác trên.
Bài 1.Tam giác ABC vuông tại A, có AB = 21cm, \(\widehat{C}\) = 40°, phân giác BD của góc ABC, D ∈ AC. Tính
a) độ dài đoạn thẳng AC, BC
b) độ dài đoạn thẳng BD
Bài 2. Cho tam giác ABC vuông tại A, đường cao AH. Biết HB = 25cm, HC = 64cm. Tính \(\widehat{B},\) \(\widehat{C}\)
Bài 3. Cho tam giác ABC vuông tại A có \(\widehat{B}\) = 30 °, AB = 6cm
a) Giải tam giác vuông ABC
b) Vẽ đường cao AH và trung tuyến Am của tam giác ABC. Tính diện tích tam giác AHM
Bài 2:
Xét \(\Delta ABC\)có \(\widehat{A}=90^o\)và\(AH\perp BC\)
\(\Rightarrow AH^2=HB.HC\)(Hệ thức lượng)
\(AH^2=25.64\)
\(AH=\sqrt{1600}=40cm\)
Xét \(\Delta ABH\)có\(\widehat{H}=90^o\)
\(\Rightarrow\tan B=\frac{AH}{BH}\)\(=\frac{40}{25}=\frac{8}{5}\)
\(\Rightarrow\widehat{B}\approx58^o\)
Xét \(\Delta ABC\)có \(\widehat{A}=90^o\)
\(\Rightarrow\widehat{B}+\widehat{C}=90^o\)
\(58^o+\widehat{C}=90^o\)
\(\Rightarrow\widehat{C}\approx90^o-58^o\)
\(\widehat{C}\approx32^o\)