cho phương trình \(x^2-2\left(m-1\right)x+m-3=0\)
tìm giá trị của m để \(\sqrt{x_1}+\sqrt{x_2}=5\)
Cho phương trình: \(x^2-\left(2m+5\right)x+2m+1=0\). Tìm m để phương trình có hai nghiệm phân biệt \(x_1,x_2\) mà biểu thức M=\(\left|\sqrt{x_1}-\sqrt{x_2}\right|\) đạt giá trị nhỏ nhất.
Để phương trình có 2 nghiệm phân biệt thì:
\(\Delta>0\)
<=> \(\left[-\left(2m+5\right)\right]^2-4.1.\left(2m+1\right)>0\)
\(\Leftrightarrow4m^2+12m+21>0\)
\(\Leftrightarrow4m^2+12m+9+12>0\)
<=> \(\left(2m+3\right)^2+12>0\)
Vì (2m+3)2 luôn lớn hơn hoặc bằng 0 với mọi m nên phương trình đã cho có nghiệm với mọi giá trị m.
Theo viét:
\(\left\{{}\begin{matrix}x_1+x_2=2m+5\\x_1x_2=2m+1\end{matrix}\right.\)
Theo đề:
\(M=\left|\sqrt{x_1}-\sqrt{x_2}\right|\) (điều kiện: \(x_1;x_2\ge0\))
=> \(M^2=x_1+x_2-2\sqrt{x_1x_2}=2m+5-2\sqrt{2m+1}\)
<=> \(M^2=\left(\sqrt{2m+1}\right)\left(\sqrt{2m+1}\right)-2\sqrt{\left(2m+1\right)}+4\)
<=> \(M^2=\left(\sqrt{2m+1}\right)\left(\sqrt{2m+1}-2\right)+4\)
<=> \(M^2=\left(\sqrt{2m+1}-1\right)^2+4\ge4\)
=> \(M\ge2\).
Dấu "=" xảy ra khi m = 0
Thế m = 0 vào phương trình ở đề được:
\(x^2-5x+1=0\)
Phương trình này có hai nghiệm dương -> thỏa mãn điều kiện.
Vậy min M = 2 và m = 0
☕T.Lam
cho phương trình \(x^2-2\left(m+3\right)x+m+1=0\) (1) . Gọi \(x_1\),\(x_2\) là các nghiệm dương của phương trình (1). Tìm GTNN của \(P=\left|\dfrac{1}{\sqrt{x_1}}-\dfrac{1}{\sqrt{x_2}}\right|\)
Để (1) có 2 nghiệm dương \(\Rightarrow\left\{{}\begin{matrix}\Delta'=\left(m+3\right)^2-m-1\ge0\\x_1+x_2=2\left(m+3\right)>0\\x_1x_2=m+1>0\end{matrix}\right.\) \(\Rightarrow m>-1\)
\(P=\left|\dfrac{\sqrt{x_1}-\sqrt{x_2}}{\sqrt{x_1x_2}}\right|>0\Rightarrow P^2=\dfrac{\left(\sqrt{x_1}-\sqrt{x_2}\right)^2}{x_1x_2}\)
\(P^2=\dfrac{x_1+x_2-2\sqrt{x_1x_2}}{x_1x_2}=\dfrac{2\left(m+3\right)-2\sqrt{m+1}}{m+1}=\dfrac{4}{m+1}-\dfrac{2}{\sqrt{m+1}}+2\)
\(P^2=\left(\dfrac{2}{\sqrt{m+1}}-\dfrac{1}{2}\right)^2+\dfrac{7}{4}\ge\dfrac{7}{4}\Rightarrow P\ge\dfrac{\sqrt{7}}{2}\)
Dấu "=" xảy ra khi \(\sqrt{m+1}=4\Rightarrow m=15\)
Cho phương trình:\(x^2-\left(2m+5\right)x+2m+1=0\)
Tìm m để phương trình có 2 nghiệm phân biệt \(x_1;x_2\) sao cho P=/\(\sqrt{x_1}-\sqrt{x_2}\) /đạt GTNN
Phương trình có 2 nghiệm phân biệt ⇔ △ > 0
⇔ 4m2 + 20m + 25 - 8m - 4 > 0
⇔ 4m2 + 12m + 21 > 0
⇔ (2m + 3)2 + 12 > 0 ⇔ m ∈ R
Theo hệ thức Viet có: \(\left\{{}\begin{matrix}x_1+x_2=2m+5\\x_1.x_2=2m+1\end{matrix}\right.\)
=> P2 = (\(\left|\sqrt{x_1}-\sqrt{x_2}\right|\))2 = (\(\sqrt{x_1}-\sqrt{x_2}\))2
= x1 + x2 - 2\(\sqrt{x_1.x_2}\)
= 2m + 5 - 2\(\sqrt{2m+1}\)
= 2m + 1 - 2\(\sqrt{2m+1}\) + 1 + 3
= (\(\sqrt{2m+1}\) - 1)2 + 3 ≥ 3 ∀m
=> P ≥ \(\sqrt{3}\)
Dấu "=" xảy ra ⇔ \(\sqrt{2m+1}\) - 1 = 0 ⇔ \(\sqrt{2m+1}\)=1 ⇔ 2m + 1 = 1 ⇔ m = 0
Vậy với m = 0 thì P đạt GTNN = \(\sqrt{3}\)
cho phương trình \(x^2-2\left(m-1\right)x+m-5=0\)
1giải phương trình đã cho với m=2
2 tìm m để phương trình có hai nghiệm \(x_1,x_2\).tìm m để biểu thức \(P=\left|x_1-x_2\right|\)đạt giá trị nhỏ nhất
1.Thế `m=2` vào pt, ta được:
\(x^2-2\left(2-1\right)x+2-5=0\)
\(\Leftrightarrow x^2-2x-3=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=3\end{matrix}\right.\) ( Vi-ét )
2.
Theo hệ thức Vi-ét, ta có: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)\\x_1x_2=m-5\end{matrix}\right.\)
\(P=\left|x_1-x_2\right|\)
\(\Leftrightarrow P^2=\left(x_1+x_2\right)^2-4x_1x_2\)
\(\Leftrightarrow P^2=\left[2\left(m-1\right)\right]^2-4\left(m-5\right)\)
\(\Leftrightarrow P^2=4\left(m-1\right)^2-4\left(m-5\right)\)
\(\Leftrightarrow P^2=4m^2-8m+4-4m+20\)
\(\Leftrightarrow P^2=4m^2-12m+24\)
\(\Leftrightarrow P^2=\left(2m-3\right)^2+15\)
\(P^2\ge15\)
mà \(P\ge0\)
\(\Rightarrow Min_P=\sqrt{15}\)
Dấu "=" xảy ra khi \(2m-3=0\) \(\Leftrightarrow m=\dfrac{3}{2}\)
Vậy \(Min_P=\sqrt{15}\) khi \(m=\dfrac{3}{2}\)
\(x^2-2(m-1)x+m-5=0\ \ (1) \\1)Thay\ m=2\ vào\ (1)\ ta\ có: \\x^2-2(2-1)x+2-5=0 \\<=>x^2-2x-3=0<=>(x+1)(x-3)=0<=>x=-1\ hoặc\ x=3 \\2)\triangle'=[-(m-1)]^2-1.(m-5)=m^2-3m+6>0\ với\ mọi\ m \\->Phương\ trình\ (1)\ luôn\ có\ 2\ nghiệm\ phân\ biệt\ với\ mọi\ m. \\Theo\ hệ\ thức\ Vi-ét\ ta\ có: \\x_1+x_2=2(m-1);x_1x_2=m-5 \)
\(Ta\ có: P^2=x_1^2-2x_1x_2+x_2^2=(x_1+x_2)^2-4x_1x_2 \\=[2(m-1)]^2-4(m-5)=4(m-\dfrac{3}{2})^2+15\ge15 \\->P\ge\sqrt{15} \\Đẳng\ thức\ xảy\ ra\ khi\ m=\dfrac{3}{2}. \\Vậy\ P\ nhỏ\ nhất\ bằng\ \sqrt{15}\ (khi\ m=\dfrac{3}{2}).\)
Cho phương trình: \(x^2-\left(m-2\right)x-3=0\) (m là tham số ). Tìm m để các nghiệm của phương trình thỏa mãn hệ thức
\(\sqrt{\left(x_1\right)^2+2018}-x_1=\sqrt{\left(x_2\right)^2+2018}+x_2\)
Cho phương trình ẩn x : \(^{x^2-5x+m-2=0\left(1\right)}\)
a.Giải phương trình (1) khi m=-4
b.Tìm m để phương trình (1) có hai nghiệm dương phân biệt \(_{x_1,_{ }x_2}\)thỏa mãn hệ thức \(2\left(\dfrac{1}{\sqrt{x_1}}+\dfrac{1}{\sqrt{x_2}}\right)=3\)
a. thay m=-4 vào (1) ta có:
\(x^2-5x-6=0\)
Δ=b\(^2\)-4ac= (-5)\(^2\) - 4.1.(-6)= 25 + 24= 49 > 0
\(\sqrt{\Delta}=\sqrt{49}=7\)
x\(_1\)=\(\dfrac{-b+\sqrt{\Delta}}{2a}=\dfrac{5+7}{2}\)=6
x\(_2\)=\(\dfrac{-b-\sqrt{\Delta}}{2a}=\dfrac{5-7}{2}\)=-1
vậy khi x=-4 thì pt đã cho có 2 nghiệm x\(_1\)=6; x\(_2\)=-1
cho phương trình \(x^2-2\left(m+2\right)x+m+1=0\)
a, giải phương trình khi m = \(\dfrac{1}{2}\)
b, tìm các giá trị của m để phương trình có 2 nghiệm trái dấu
c, gọi \(x_1;x_2\) là 2 nghiệm của phương trình. Tìm giá trị của m để \(x_1\left(1-2x_2\right)+x_2\left(1-2x_2\right)=m^2\)
a. Bạn tự giải
b. Để pt có 2 nghiệm trái dấu
\(\Leftrightarrow ac< 0\Leftrightarrow m+1< 0\Rightarrow m< -1\)
c. Đề bài có vẻ ko chính xác, sửa lại ngoặc sau thành \(x_2\left(1-2x_1\right)...\)
\(\Delta'=\left(m+2\right)^2-4\left(m+1\right)=m^2\ge0\) ; \(\forall m\)
\(\Rightarrow\) Pt đã cho luôn luôn có nghiệm
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m+2\right)\\x_1x_2=m+1\end{matrix}\right.\)
\(x_1\left(1-2x_2\right)+x_2\left(1-2x_1\right)=m^2\)
\(\Leftrightarrow x_1+x_2-4x_1x_2=m^2\)
\(\Leftrightarrow2\left(m+2\right)-4\left(m+1\right)=m^2\)
\(\Leftrightarrow m^2+2m=0\Rightarrow\left[{}\begin{matrix}m=0\\m=-2\end{matrix}\right.\)
Cho phương trình: \(x^2+2\left(m+1\right)x+m-4=0\) (m là tham số) (1)
a) Giải phương trình (1) khi \(m=-5\)
b) Tìm giá trị của m để phương trình (1) có hai nghiệm x1, x2 thỏa mãn: \(\dfrac{x_1}{x_2}+\dfrac{x_2}{x_1}=-3\)
a: Thay m=-5 vào (1), ta được:
\(x^2+2\left(-5+1\right)x-5-4=0\)
\(\Leftrightarrow x^2-8x-9=0\)
=>(x-9)(x+1)=0
=>x=9 hoặc x=-1
b: \(\text{Δ}=\left(2m+2\right)^2-4\left(m-4\right)=4m^2+8m+4-4m+16=4m^2+4m+20>0\)
Do đó: Phương trình luôn có hai nghiệm phân biệt
\(\dfrac{x_1}{x_2}+\dfrac{x_2}{x_1}=-3\)
\(\Leftrightarrow x_1^2+x_2^2=-3x_1x_2\)
\(\Leftrightarrow\left(x_1+x_2\right)^2+x_1x_2=0\)
\(\Leftrightarrow\left(2m+2\right)^2+m-4=0\)
\(\Leftrightarrow4m^2+9m=0\)
=>m(4m+9)=0
=>m=0 hoặc m=-9/4
Cho phương trình \(x^2-2x+m+2=0\). Tìm m để phương trình có hai nghiệm x1, x2 thỏa mãn:
\(\sqrt{\left(x_1^2+mx_2-4x_1+4\right)\left(x_2^2+mx_1-4x_2+4\right)}=\left|x_2-x_1\right|\sqrt{x_1x_2}\)
Cho phương trình \(x^2-2\left(m+1\right)+2m-3=0\)
Tìm các giá trị của m để phương trình có 2 nghiệm phân biệt thoản mãn biểu thức \(P=\left|\dfrac{x_1+x_2}{x_1-x_2}\right|\)
đạt GTNN
\(\Delta'=\left(m+1\right)^2-\left(2m-3\right)=m^2+4>0\) ; \(\forall m\)
\(\Rightarrow\) Phương trình luôn có 2 nghiệm pb với mọi m
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2m+2\\x_1x_2=2m-3\end{matrix}\right.\)
Ta có: \(P=\left|\dfrac{x_1+x_2}{x_1-x_2}\right|\ge0\)
\(\Rightarrow P_{min}=0\) khi \(x_1+x_2=0\Leftrightarrow m=-1\)
Đề là yêu cầu tìm max hay min nhỉ? Min thế này thì có vẻ là quá dễ