Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Thị My
Xem chi tiết
👁💧👄💧👁
5 tháng 8 2021 lúc 14:55

a) \(\Delta=\left[-\left(m+3\right)\right]^2-4.1.m\\ =m^2+6m+9-4m\\ =m^2+2m+9\\ =\left(m+1\right)^2+8>0\forall m\)

Vậy phương trình luôn có 2 nghiệm phân biệt với mọi m.

b) Áp dụng hệ thức Vi-et, ta có:

\(\left\{{}\begin{matrix}x_1+x_2=m+3\\x_1x_2=m\end{matrix}\right.\)

Mà \(x_1^2+x_2^2=6\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=6\\ \Leftrightarrow\left(m+3\right)^2-2m=6\\ \Leftrightarrow m^2+6m+9-2m=6\\ \Leftrightarrow m^2+4m+3=0\\ \Leftrightarrow\left(m+1\right)\left(m+3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}m=-1\\m=-3\end{matrix}\right.\)

Vậy \(m\in\left\{-1;-3\right\}\) là các giá trị cần tìm.

Phạm Nguyễn Hà Chi
5 tháng 8 2021 lúc 15:18

a, Ta có: \(\Delta=\left[-\left(m+3\right)\right]^2-4.1.m\)

                   \(=m^2+6m+9-4m\)

                   \(=m^2+2m+9\)

                   \(=m^2+2m+1+8\)

                   \(=\left(m+1\right)^2+8\)

Lại có:  \(\left(m+1\right)^2\ge0\forall m\Rightarrow\left(m+1\right)^2+8\ge8\forall m\)

Vậy phương trình luôn có 2 nghiêm phân biệt 

b, Theo hệ thức Vi-ét: \(\left\{{}\begin{matrix}x_1+x_2=m+3\\x_1+x_2=m\end{matrix}\right.\)

Theo bài ra:

 \(x_1^2+x_2^2=6\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=6\)

\(\Leftrightarrow\left(m+3\right)^2-2m=6\)

\(\Leftrightarrow m^2+6m+9-2m=6\)

\(\Leftrightarrow m^2+6m+9-2m-6=0\)

\(\Leftrightarrow m^2+4m+3=0\)

\(\Leftrightarrow m^2+m+3m+3=0\)

\(\Leftrightarrow\left(m^2+m\right)+\left(3m+3\right)=0\)

\(\Leftrightarrow m\left(m+1\right)+3\left(m+1\right)=0\)

\(\Leftrightarrow\left(m+1\right)\left(m+3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}m+1=0\\m+3=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}m=-1\\m=-3\end{matrix}\right.\)

Vậy với m=-1 hoặc m=-3 thì phương trinh trên thỏa mãn hệ thức 

 

Bùi duy cường
Xem chi tiết
Mất nick đau lòng con qu...
22 tháng 5 2019 lúc 12:06

\(a)\) Khi m=2 pt \(\Leftrightarrow\)\(x^2-\left(2.2-1\right)x+2\left(2-1\right)=0\)

\(\Leftrightarrow\)\(x^2-3x+2=0\)\(\Leftrightarrow\)\(\left(x-1\right)\left(x-2\right)=0\)\(\Leftrightarrow\)\(\orbr{\begin{cases}x=1\\x=2\end{cases}}\)

Vậy pt có hai nghiệm phân biệt \(\hept{\begin{cases}x_1=1\\x_2=2\end{cases}}\) khi m=2 

\(b)\) Ta có : \(\Delta=\left(1-2m\right)^2-4m\left(m-1\right)=4m^2-4m+1-4m^2+4m=1>0\)

Vậy pt luôn có hai nghiệm phân biệt với mọi m 

Phùng Minh Phúc
Xem chi tiết
✿✿❑ĐạT̐®ŋɢย❐✿✿
8 tháng 5 2021 lúc 10:09

Xét pt cho là pt bậc hai một ẩn $x$ ( Với $a=1 \neq 0, b=-2(m-1), c = m-3$ )

Ta có : \(\Delta'=b'^2-ac\)

\(=\left[-\left(m-1\right)\right]^2-\left(m-3\right)\cdot1\)

\(=m^2-2m+1-m+3\)

\(=m^2-3m+4=\left(m-\dfrac{3}{2}\right)^2+\dfrac{7}{4}>0\)

Nên pt cho luôn có hai nghiệm phân biệt \(\forall m\)

Giáp Văn Long
Xem chi tiết
Lê Song Phương
14 tháng 3 2022 lúc 18:09

a) Xét pt \(x^2-\left(2m-3\right)x+m^2-3m=0\)

Ta có \(\Delta=\left[-\left(2m-3\right)^2\right]-4.1\left(m^2-3m\right)\)\(=4m^2-12m+9-4m^2+12m\)\(=9>0\)

Vậy pt đã cho luôn có 2 nghiệm phân biệt với mọi m.

Câu b mình nhìn không rõ đề, bạn sửa lại nhé.

Khách vãng lai đã xóa
hahuy huyha
Xem chi tiết
Nguyễn Lê Phước Thịnh
14 tháng 6 2023 lúc 20:34

a: x^2+2xm+m^2=0

Khi m=5 thì pt sẽ là x^2+10x+25=0

=>x=-5

b: Thay x=-2 vào pt, ta được:

4-4m+m^2=0

=>m=2

Nguyen Phuc Duy
Xem chi tiết

Với m=3 

\(PT\Leftrightarrow x^2-3x-x+3=0\)

\(\Leftrightarrow x^2-4x+3=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-3\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=3\end{cases}}\)

Vậy pt có 2 nghiệm x=1, x=3 khi m=3

Thị Trúc Uyên Mai
3 tháng 7 2019 lúc 16:40

ta có  \(x^2-mx+m-x\)

=\(x\left(x-m\right)+\left(m-x\right)\)

=\(x\left(x-m\right)-\left(x-m\right)\)

=\(\left(x-m\right)\left(x-1\right)\)

với m=3 thì

\(\left(x-3\right)\left(x-1\right)=0\)

=>\(\hept{\begin{cases}x-3=0\\x-1=0\end{cases}}\)=>\(\hept{\begin{cases}x=3\\x=1\end{cases}}\)

vậy...

bn tự kết luận nhé

Ngọc Anh
Xem chi tiết
Nguyễn Lê Phước Thịnh
10 tháng 4 2023 lúc 9:52

a: Δ=(2m+2)^2-4(m-2)

=4m^2+8m+4-4m+8

=4m^2+4m+12

=(2m+1)^2+11>=11>0

=>Phương trình luôn cóhai nghiệm phân biệt

b: x1^2+2(m+1)x2-5m+2

=x1^2+x2(x1+x2)-4m-m+2

=x1^2+x1x2+x2^2-5m+2

=(x1+x2)^2-2x1x2+x1x2-5m+2

=(2m+2)^2-(m-2)-5m+2

=4m^2+8m+4-m+2-5m+2

=4m^2+2m+8

=4(m^2+1/2m+2)

=4(m^2+2*m*1/4+1/16+31/16)

=4(m+1/4)^2+31/4>=31/4

Dấu = xảy ra khi m=-1/4

Triết Phan
Xem chi tiết
Nguyễn Lê Phước Thịnh
30 tháng 3 2022 lúc 22:54

a: \(\Delta=\left(2m-2\right)^2-4\left(-m-3\right)\)

\(=4m^2-8m+4+4m+12\)

\(=4m^2-4m+16\)

\(=\left(2m-1\right)^2+15>0\)

Do đó: Phương trình luôn có hai nghiệm phân biệt

b: Theo đề, ta có:

\(\left(x_1+x_2\right)^2-2x_1x_2>=10\)

\(\Leftrightarrow\left(2m-2\right)^2-2\left(-m-3\right)>=10\)

\(\Leftrightarrow4m^2-8m+4+2m+6-10>=0\)

\(\Leftrightarrow4m^2-6m>=0\)

=>m<=0 hoặc m>=3/2

Anh Quynh
Xem chi tiết
Nguyễn Việt Lâm
21 tháng 3 2022 lúc 19:59

a. Với \(m=-5\) pt trở thành:

\(x^2+8x-9=0\)

\(a+b+c=1+8-9=0\) nên pt có 2 nghiệm: \(\left\{{}\begin{matrix}x_1=1\\x_2=-9\end{matrix}\right.\)

b. Ta có:

\(\Delta'=\left(m+1\right)^2-\left(m-4\right)=m^2+m+5=\left(m+\dfrac{1}{2}\right)^2+\dfrac{19}{4}>0;\forall m\)

\(\Rightarrow\) Pt đã cho luôn có 2 nghiệm pb với mọi m

Tòng Thị Như Quỳnh
Xem chi tiết