Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Đỗ Ngọc Bích Châu
Xem chi tiết
Nguyễn Việt Lâm
3 tháng 10 2019 lúc 7:37

Biến đổi tương đương:

\(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\ge\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\)

\(\Leftrightarrow\frac{2}{a^2}+\frac{2}{b^2}+\frac{2}{c^2}-\frac{2}{ab}-\frac{2}{bc}-\frac{2}{ca}\ge0\)

\(\Leftrightarrow\frac{1}{a^2}-\frac{2}{ab}+\frac{1}{b^2}+\frac{1}{b^2}-\frac{2}{bc}+\frac{1}{c^2}+\frac{1}{c^2}-\frac{2}{ca}+\frac{1}{a^2}\ge0\)

\(\Leftrightarrow\left(\frac{1}{a}-\frac{1}{b}\right)^2+\left(\frac{1}{b}-\frac{1}{c}\right)^2+\left(\frac{1}{c}-\frac{1}{a}\right)^2\ge0\) (luôn đúng)

Dấu "=" xảy ra khi \(a=b=c\)

Ngô Minh Hiếu
Xem chi tiết
Nguyễn Việt Lâm
12 tháng 12 2020 lúc 17:56

\(\left(a+b+c\right)^2=a^2+b^2+c^2\Leftrightarrow ab+bc+ca=0\)

\(\Rightarrow a^3b^3+b^3c^3+c^3a^3=3a^2b^2c^2\)

Ta có:

\(\dfrac{bc}{a^2}+\dfrac{ac}{b^2}+\dfrac{ab}{c^2}=\dfrac{a^3b^3+b^3c^3+c^3a^3}{a^2b^2c^2}=\dfrac{3a^2b^2c^2}{a^2b^2c^2}=3\)

Quốc Bảo
Xem chi tiết
Nguyễn Lê Phước Thịnh
24 tháng 8 2021 lúc 0:35

c: Ta có: \(a\left(a+2b\right)^3-b\left(2a+b\right)^3\)

\(=a^4+6a^3b+12a^2b^2+8ab^3-8a^3b-12a^2b^2-6ab^3-b^4\)

\(=a^4-2a^3b+2ab^3-b^4\)

\(=\left(a-b\right)\left(a+b\right)\left(a^2+b^2\right)-2ab\left(a^2-b^2\right)\)

\(=\left(a-b\right)^3\cdot\left(a+b\right)\)

Lê Tiến Thành
Xem chi tiết
Nguyễn Lê Phước Thịnh
16 tháng 1 2022 lúc 13:43

\(\Leftrightarrow a^2+b^2+c^2-ab-bc-ac>=0\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ac>=0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2>=0\)(luôn đúng)

Đặng Gia Ân
Xem chi tiết
Phạm Ngọc Bích
17 tháng 1 2022 lúc 16:23
Ngu kkkkkkkkkkkkkkkkkkkkkkkkkkkkkk
Khách vãng lai đã xóa
cao minh vũ
Xem chi tiết
Kwalla
Xem chi tiết
Toru
2 tháng 10 2023 lúc 22:08

\(a^2+b^2+c^2-ab-ac-bc=0\\\Leftrightarrow 2a^2+2b^2+2c^2-2ab-2ac-2bc=0\\\Leftrightarrow (a^2-2ab+b^2)+(b^2-2bc+c^2)+(a^2-2ac+c^2)=0\\\Leftrightarrow (a-b)^2+(b-c)^2+(a-c)^2=0\)

Ta thấy: \(\left(a-b\right)^2\ge0\forall a;b\)

              \(\left(b-c\right)^2\ge0\forall b;c\)

              \(\left(a-c\right)^2\ge0\forall a;c\)

\(\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2\ge0\forall a;b;c\)

Mặt khác: \(\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2=0\)

nên: \(\left\{{}\begin{matrix}a-b=0\\b-c=0\\a-c=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=b\\b=c\\a=c\end{matrix}\right.\)

\(\Leftrightarrow a=b=c\left(dpcm\right)\)

#\(Toru\)

Bùi Doãn Nhật Quang
Xem chi tiết
ILoveMath
27 tháng 1 2022 lúc 10:18

\(1,\left(ac+bd\right)^2+\left(ad-bc\right)^2\\ =a^2c^2+2abcd+b^2d^2+a^2d^2-2abcd+b^2c^2\\ =a^2c^2+b^2d^2+a^2d^2+b^2c^2\\ =\left(a^2c^2+a^2d^2\right)+\left(b^2d^2+b^2c^2\right)\\ =a^2\left(c^2+d^2\right)+b^2\left(c^2+d^2\right)\\ =\left(a^2+b^2\right)\left(c^2+d^2\right)\)

2, \(\left(a^2+b^2\right)\left(c^2+d^2\right)\ge\left(ac+bd\right)^2\)

\(\Leftrightarrow a^2c^2+b^2c^2+a^2d^2+b^2d^2\ge a^2c^2+2abcd+b^2d^2\)

\(\Leftrightarrow b^2c^2-2abcd+a^2d^2\ge0\)

\(\Leftrightarrow\left(bc-ad\right)^2\ge0\)

Dấu "=" xảy ra \(\Leftrightarrow bc=ad\Leftrightarrow\dfrac{a}{b}=\dfrac{c}{d}\)

Thanh Quân
27 tháng 1 2022 lúc 10:18

\(1\)

⇔ \(\left(ac\right)^2+2abcd+\left(bd\right)^2+\left(ad\right)^2-2abcd+\left(bc\right)^2=\left(a^2+b^2\right)\left(c^2+d^2\right)\)

\(a^2\left(c^2+d^2\right)+b^2\left(c^2+d^2\right)=\left(a^2+b^2\right)\left(c^2+d^2\right)\)

\(\left(a^2+b^2\right)\left(c^2+d^2\right)=\left(a^2+b^2\right)\left(c^2+d^2\right)\) ⇒ \(\left(dpcm\right)\)

\(2\)/

\(\left(ac\right)^2+\left(ad\right)^2+\left(bc\right)^2+\left(bd\right)^2\ge\left(ac\right)^2+2abcd+\left(bd\right)^2\)

\(\left(ad\right)^2-2abcd+\left(bc\right)^2\ge0\)

\(\left(ad-bc\right)^2\ge0\left(đúng\right)\)

Hoàng Việt Tân
27 tháng 1 2022 lúc 10:36

1/ \((ac + bd)^2 + (ad - bc)^2 = (ac)^2 + (bd)^2 + 2(ac)^2 (bd)^2 + (ad)^2 + (bc)^2 - 2(ad)^2 (bc)^2 \)

                                          \(= (ac)^2 + (bd)^2 + 2(acbd)^2 + (ad)^2 + (bc)^2 - 2(adbc)^2 \)

                                          \(= (ac)^2 + (bd)^2 + (ad)^2 + (bc)^2\)

                                          \(= a^2 c^2 + b^2 c^2 + a^2 d^2 + b^2 d^2\)

                                          \(= (a^2 + b^2)c^2 + (a^2 + b^2)d^2\)

                                          \(= (a^2 + b^2)(c^2 + d^2)\)

➤ \((ac + bd)^2 + (ad - bc)^2 = (a^2 + b^2)(c^2 + d^2)\)

2/ \((a^2 + b^2)(c^2 + d^2) ≥ (ac + bd)^2 \) 

↔ \((ac)^2 + (bc)^2 + (ad)^2 + (bd)^2 ≥ (ac)^2 + (bd)^2 + 2(ac)(bd)\)

\( (bc)^2 + (ad)^2 ≥ 2(acbd)\)

\( (bc)^2 + (ad)^2 - 2(bcad) ≥ 0\)

↔ \( (bc - ad)^2 ≥ 0 \) với mọi a,b,c và d

➤ \((a^2 + b^2)(c^2 + d^2) ≥ (ac + bd)^2 \) với mọi a,b,c,d

 
Nguyễn Ngọc Anh
Xem chi tiết

(a + b + c)2 = a2 + b2 + c2 + 2ab + 2bc + 2ac 

⇒ 2ab + 2bc + 2ac = (a + b + c)2 - (a2 + b2 + c2)

⇒ 2.(ab + bc + ac) = 92 - 53

    2.(ab + bc + ac) = 81 - 53

     2.(ab + bc + ac) = 28

        ab + bc + ac = 28 : 2

        ab + bc + ac = 14

        

Đào Trí Bình
5 tháng 8 2023 lúc 6:43

ab + bc + cd = 14

ILoveMath
Xem chi tiết