Cho t.giác ABC vuông tại A, vẽ đường cao AH và đường phân giác BM cắt nhau tại K ( H thuộc BC; M thuộc AC ). Chứng minh :
a) t.giác ABC đồng dạng với t.giác HBA; t.giác ABK đồng dạng với t.giác CBM.
b) AM.AK = KH.MC.
a) Vì \(\Delta ABC\) vuông tại A (giả thiết).
\(\Rightarrow AB^2+AC^2=BC^2\)(định lí Py-ta-go).
\(\Rightarrow6^2+8^2=BC^2\)(thay số).
\(\Rightarrow BC^2=36+64=100\)
\(\Rightarrow BC=10\left(cm\right)\)(vì \(BC>0\)).
Xét \(\Delta ABC\)có phân giác BD (giả thiết).
\(\Rightarrow\frac{AD}{CD}=\frac{AB}{CB}\)(tính chất).
\(\Rightarrow\frac{AD}{CD+AD}=\frac{AB}{CB+AB}\)(tính chất của tỉ lệ thức).
\(\Rightarrow\frac{AD}{AC}=\frac{AB}{BC+BA}\)
\(\Rightarrow\frac{AD}{8}=\frac{6}{6+10}=\frac{6}{16}=\frac{3}{8}\)(thay số).
\(\Rightarrow AD=\frac{3}{8}.8=3\left(cm\right)\)
Do đó \(CD=AC-AD=8-3=5\left(cm\right)\)
Vậy \(AD=3\left(cm\right),CD=5\left(cm\right)\)
b) Xét \(\Delta ABC\)và \(\Delta HBA\)có:
\(\widehat{ABC}\)chung.
\(\widehat{BAC}=\widehat{BHA}\left(=90^0\right)\)
\(\Rightarrow\Delta ABC~\Delta HBA\left(g.g\right)\)(điều phải chứng minh).
Cho t.giác ABC vuông tại A, cạnh huyền BC=10cm, vẽ đường cao AH( H thuộc BC ). Đường phân giác BD ( D thuộc AC ) cắt đường cao AH tại I (((( I ko phải L nha ))))
Chứng minh : a) t.giác HBA đồng dạng với t.giác ABC.
b) t.giác ABD đồng dạng với t.giác HBI và từ đó suy ra AB.BI=HC.BD.
c) Tính diện tích t.giác BCD . ( làm tròn kết quả đến chữ số thập phân thứ 2 )
cho t.giác ABC vuông tại A, vẽ đường cao AH và đường phân giác BD (D thuộc AC) và cắt nhau tại I. chứng minh ;
a) t.giác ABC đồng dạng vs t.giác HBA.
b) chứng minh AH^2 = HB.HC.
c) chứng minh AC.AD =IH.DC.
giúp mk nha, mk cảm ơn, toán 8
a)xét tam giác ABC và tam giác HBA có
góc BAC=góc AHB(=90)
góc B chung
=>tam giác ABC đồng dạng vs t.giác HBA(gg)
b)CMTT có tam giác ABC đồng dạng t.giác HAC
=>t.giác HBA đồng dạng t.giác HAC
=>AH/BH=HC/AH
=>AH^2=BH.CH
c)+)xét tam giác BAD và tam giác BHI có:
BAD=BHI=90
ABD=HBI(BD là phân giác ABC)
=>T.giác BAD đồng dạng vs tam giac BHI(g.g)
=>AB/BH=AD/HI (1)
+)Tam giác ABC đồng dạng tam giac HBA ( CMT)
=>AB/BH=BC/AB (2)
+)(1);(2)=>AD/HI=BC/AB
Mà có CD/AD=BC/AB(BD là phân giác ABC)
=>AD/HI=CD/AD=>AD^2=HI.CD
cho t.giác ABC vuông tại A ( AB < AC ), đường cao AH (H thuộc BC), trên tia HC lấy điểm K sao cho HK = AH. đường thẳng vuông góc với BC tại K cắt AC tại I
a) c.minh t.giác IKC đồng dạng vs t.giác BAC.
b) AH^2 = HB.HC.
c) AI.AD = IH.DC.
mk cảm ơn
cho t.giác ABC vuông tại A ( AB < AC ), đường cao AH (H thuộc BC), trên tia HC lấy điểm K sao cho HK = AH. đường thẳng vuông góc với BC tại K cắt AC tại I
a) c.minh t.giác IKC đồng dạng vs t.giác BAC.
b)c.minh góc AKC = góc BIC.
c) gọi M là trung điểm của đoạn thẳng BI, tia AM cắt BC tại D. chứng minh BD\DC = HK\HC.
Cho tam giác ABC vuông tại A, AB<AC, và có đường cao AH (H thuộc BC).
a) Chứng minh tam giác ABH và tam giác CBA đồng dạng
b) Dường phân giác của góc ABC cắt AC tại K và cắt AH tại M. Chứng Minh BA.BM = BH.BK và BA.BK = BC.BM
c) Vẽ KD vuông góc với BC tại D. Chứng minh BA/DH = BC/DC
d) Gọi T là điểm đối xứng với H qua M và V là điểm đối xứng với D qua K. Chứng minh ba điểm B, T, V thẳng hàng
Bạn nào biết giúp mình với nhé:)))
cho tam giác ABC vuông tại A đường cao AH H thuộc BC M là 1 điểm thuộc AH qua M vẽ đường thẳng song song với AC cắt BC tại N. chứng minh BM vuông góc với AN
MN//AC
AB vuông góc AC
=>MN vuông góc AB
Xét ΔANB có
NM,AH là đường cao
NM cắt AH tại M
=>M là trực tâm
=>BM vuông góc AN
Cho tam giác ABC vuông tại A, AH là đường cao. Vẽ BD là đường phân giác của tam giác ABC cắt AH tại K. Qua C kẻ đường thẳng vuông góc BD tại E. Kéo dài đường thẳng BA và CE cắt nhau tại M. MD cắt BC tại I. Chứng minh EB là tia phân giác IEA.
1. Cho tam giác ABC vuông tại A , có AH là đường cao ( H thuộc BC ) và AM là tia phân giác của góc HAC ( M thuộc BC ) . Kẻ vuông góc AC tại K a. Chứng minh rằng AH = AK và BA= BM b. Gọi I là giao điểm của đường thẳng MK và đường thẳng AH . Chứng minh rằng AM vuông CI và KH // CI
a: Xét ΔAHM vuông tại H và ΔAKM vuông tại K có
AM chung
góc HAM=góc KAM
=>ΔAHM=ΔAKM
=>AK=AH
góc BAM+góc CAM=90 độ
góc BMA+góc MAH=90 độ
mà góc CAM=góc HAM
nên góc BAM=góc BMA
=>ΔBAM cân tại B
b: Xét ΔAIC có
CH,IK là đường cao
CH cắt IK tại M
=>M là trực tâm
=>AM vuông góc CI
Xét ΔACI có
AM vừa là đường cao, vừa là phân giác
=>ΔACI cân tại A
Xét ΔAIC có AH/AI=AK/AC
nên KH//IC
Cho ΔABC vuông tại A, đường cao AH và đường phân giác AD (H và D thuộc BC). Biết AB = 21cm, AC = 28cm.
a) Tính diện tích tam giác ABC và chứng minh AH . BC = AB . AC
b) Tính độ dài BC, DB và DC.
c) Đường phân giác BK của ABC cắt AD tại I (K thuộc AC), tính tỉ số BI/IK . Gọi G là trọng tâm ΔABC, chứng minh IG //AC.
a: ΔABC vuông tại A
=>\(S_{ABC}=\dfrac{1}{2}\cdot AB\cdot AC=\dfrac{1}{2}\cdot21\cdot28=294\left(cm^2\right)\)
Xét ΔABC vuông tại A có AH là đường cao
nên \(S_{ABC}=\dfrac{1}{2}\cdot AH\cdot BC\)
mà \(S_{ABC}=\dfrac{1}{2}\cdot AB\cdot AC\)
nên \(AH\cdot BC=AB\cdot AC\)
b: Ta có: ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(BC^2=21^2+28^2=1225\)
=>\(BC=\sqrt{1225}=35\left(cm\right)\)
Xét ΔABC có AD là phân giác
nên \(\dfrac{DB}{AB}=\dfrac{DC}{AC}\)
=>\(\dfrac{DB}{15}=\dfrac{DC}{20}\)
=>\(\dfrac{DB}{3}=\dfrac{DC}{4}\)
mà DB+DC=BC=35cm
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{DB}{3}=\dfrac{DC}{4}=\dfrac{DB+DC}{3+4}=\dfrac{35}{7}=5\)
=>\(DB=5\cdot3=15\left(cm\right);DC=4\cdot5=20\left(cm\right)\)