MN//AC
AB vuông góc AC
=>MN vuông góc AB
Xét ΔANB có
NM,AH là đường cao
NM cắt AH tại M
=>M là trực tâm
=>BM vuông góc AN
MN//AC
AB vuông góc AC
=>MN vuông góc AB
Xét ΔANB có
NM,AH là đường cao
NM cắt AH tại M
=>M là trực tâm
=>BM vuông góc AN
cho tam giác abc vuông tại a, đường cao ah ( h thuộc bc). kẻ hd vuông góc với ab(d thuộc ab), kẻ he vuông góc với ac(e thuộc ac) gọi o là giao điểm của ah và de.
a)chứng minh tứ giác adhe là hình chữ nhật
b)qua o kẻ đường thẳng song song với ac cắt bc tại i. chứng minh io là tia phân giác của góc hie
c)gọi m là trung điểm của bh,md cắt io tại f. chứng minh tứ giác dief là hình bình hành
Cho tam giác ABC vuông tại A, đường cao AH (H thuộc BC) và có AB = 12 em và AC = l6 cm. Tia
phân giác của góc ABC cắt AH tại M và cắt AC tại N. Đường thắng qua H song song với BN cắt AC tại I.
a) Chứng minh tam giác ABC và tam giác HBA đồng dạng với nhau.
b) Tính BC và AH và BH.
c) Chứng minh tam giác AMN cân tại A và AM .AB =MH. BC.
đ) Chứng minh AM? =NI. NC.
cho tam giác abc vuông cân tại a. hai tia phân giác bm và cn cắt nhau tại i ( m thuộc ac, n thuộc ab ) . chứng minh :
a, im=in và mn song song bc
b, qua a và n kẻ đường vuông góc với bm cắt bc lần lượt tại d và e . chứng minh am=de=cd
c, tam giác mcd là tam giác gì ?
d, h là trung điểm của bc. chứng minh ah, bm, cn ddoongwf quy
e, chứng minh bm+am>bc
Cho tam giác ABC vuông cân tại A có đường cao AH đường thẳng qua A và song song với BC cắt đường thẳng qua C song song với AH tại K gọi I là hình chiếu của H trên AC M, N, J là trung điểm của IC, AK, HI
1) Chứng minh tứ giác AJMN là hình bình hành
2) Chứng minh BI vuông góc với MN
Cho tam giác ABC vuông tại A có AB=12, AC=16, đường cao AH (H thuộc BC). Tia p/g của góc ABC lần lượt cắt AH và AC tại M và N. Đường thẳng qua H song song với BN cắt AC tại I.
1) CM tg ABC đồng dạng với tg HBA
2) Tính độ dài các cạnh BC, AH, BH
3) CM tg AMN cân tại A và AM.AB=MH.BC
4)CM AM^2=NI.NC
cho tam giác abc vuông tại a ( ab < ac ) . Vẽ đường cao ah ( H thuộc bc ) lấy điểm D sao cho H là trung điểm của BD .
a , C/M tam giác abc đồng dạng tam giác hba
b , Qua C dựng đường thẳng vuông góc với tia AD , cắt AD tại E . Chứng minh AH . CD = 2AD . HE
Cho tam giác ABC vuông tại A(AB<AC) và có đường cao AH (H thuộc BC). Đường phân giác của ABC cắt AH tại M và AC tại. Vẽ KD vuông góc BC. Gọi T là điểm đối xứng với H qua M, V là điểm đối xứng với D qua K. Chứng minh B,T,V thẳng hàng
Cho tam giác ABC vuông tại A ( AB<AC), vẽ đường cao AH ( H thuộc BC). a) chứng minh tam giác ABC đồng dạng với tam giác HBA b) cho AB = 3cm ; AC = 4cm. tính BC, AH c) trên tia HC, lấy HD = HA. từ D vẽ đường thẳng song song với AH cắt AC tại E. chứng minh CE.CA=CD.CB d) chứng minh tam giác ABE cân
Cho tam giác ABC vuông tại A (AB < AC) . M là trung điểm cạnh BC. Vẽ MD vuông góc với AB tại D và ME vuông góc với AC tại E.
a) Chứng minh tứ giác ADME là hình chữ nhật.
b) Chứng minh E là trung điểm của đoạn thẳng AC và tứ giác CMDE là hình bình hành.
c) Vẽ đường cao AH của tam giác ABC. Chứng minh tứ giác MHDE là hình thang cân
d) Qua A vẽ đường thẳng song song với DH cắt DE tại K. Chứng minh HK vuông góc với AC.