Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Ngoc Nhi Tran
Xem chi tiết
Thao Nhi Nguyen
Xem chi tiết
Nguyễn Việt Lâm
24 tháng 4 2020 lúc 9:19

\(\frac{cos^2x-sin^2x}{cot^2x-tan^2x}-cos^2x=\frac{cos^2x-sin^2x}{\frac{cos^2x}{sin^2x}-\frac{sin^2x}{cos^2x}}-cos^2x\)

\(=\frac{cos^2x.sin^2x\left(cos^2x-sin^2x\right)}{cos^4x-sin^4x}-cos^2x=\frac{cos^2x.sin^2x\left(cos^2x-sin^2x\right)}{\left(cos^2x-sin^2x\right)\left(cos^2x+sin^2x\right)}-cos^2x\)

\(=cos^2x.sin^2x-cos^2x=cos^2x\left(sin^2x-1\right)\)

\(=cos^2x.\left(-cos^2x\right)=-cos^4x\)

Thao Nhi Nguyen
Xem chi tiết
Nguyễn Việt Lâm
22 tháng 4 2020 lúc 19:05

\(\frac{tan^3x}{sin^2x}-\frac{1}{sinx.cosx}+\frac{cot^3x}{cos^2x}=tan^3x\left(1+cot^2x\right)-\frac{1}{sinx.cosx}+cot^3x\left(1+tan^2x\right)\)

\(=tan^3x+tanx+cot^3x+cotx-\frac{1}{sinx.cosx}\)

\(=tan^3x+cot^3x+\frac{sinx}{cosx}+\frac{cosx}{sinx}-\frac{1}{sinx.cosx}\)

\(=tan^3x+cot^3x+\frac{sin^2x+cos^2x}{sinx.cosx}-\frac{1}{sinx.cosx}\)

\(=tan^3x+cot^3x\)

Linh nè
Xem chi tiết
Nguyễn Khánh Linh
Xem chi tiết
Nguyễn Việt Lâm
5 tháng 5 2020 lúc 22:22

\(E=\frac{\frac{1}{sin^2x}}{1-\frac{cosx}{sinx}+\frac{cos^2x}{sin^2x}}=\frac{1+cot^2x}{1-cotx+cot^2x}=\frac{1+\frac{1}{4}}{1-\frac{1}{2}+\frac{1}{4}}=...\)

\(A=tan^2x+cot^2x=\left(tanx+cotx\right)^2-2=4-2=2\)

\(B=\left(tanx+cotx\right)^3-3tanx.cotx\left(tanx+cotx\right)=2^3-3.1.2=2\)

Huy Công Tử
Xem chi tiết
Kurosu Yuuki
Xem chi tiết
Ngọc Vĩ
16 tháng 7 2016 lúc 20:07

a/ Tớ làm bên dưới rồi

b/ \(\frac{1}{sin^2x}=\frac{sin^2x+cos^2x}{sin^2x}=\frac{\frac{sin^2x}{sin^2x}+\frac{cos^2x}{sin^2x}}{\frac{sin^2x}{sin^2x}}=1+cot^2x\)(đpcm)

c/ \(\frac{1}{tanx+1}+\frac{1}{cotx+1}=\frac{cotx+1+tanx+1}{\left(tanx+1\right)\left(cotx+1\right)}=\frac{tanx+cotx+2}{tanx.cotx+tanx+cotx+1}\)

     \(=\frac{tanx+cotx+2}{tanx+cotx+2}=1\left(đpcm\right)\)

d/ \(\frac{tan^2x-cos^2x}{sin^2x}+\frac{cot^2x-sin^2x}{cos^2x}=\frac{tan^2x}{sin^2x}-\frac{cos^2x}{sin^2x}+\left(\frac{cot^2x}{cos^2x}-\frac{sin^2x}{cos^2x}\right)\)

    \(=\frac{\frac{sin^2x}{cos^2x}}{sin^2x}-\frac{cos^2x}{sin^2x}+\frac{\frac{cos^2x}{sin^2x}}{cos^2x}-\frac{sin^2x}{cos^2x}\)

      \(=\frac{1}{cos^2x}-cot^2x+\frac{1}{sin^2x}-tan^2x\)

        \(=1+tan^2x-cot^2x+\left(1+cot^2x\right)-tan^2x\)

        \(=1+tan^2x-cot^2x+1+cot^2x-tan^2x=2\left(đpcm\right)\)

Kurosu Yuuki
17 tháng 7 2016 lúc 7:07

giúp e câu nỳ vs e cần gấp

Tìm X biết:

TanX+CosX=2

Hobiee
Xem chi tiết
YangSu
24 tháng 5 2023 lúc 20:36

Học bài trước rồi à :D

Nguyễn Lê Phước Thịnh
24 tháng 5 2023 lúc 20:36

a: A=(sinx+cosx)^2-1=m^2-1

b: B=căn (sinx+cosx)^2-4sinxcosx=căn m^2-4(m^2-1)=căn -3m^2+4

c: C=(sin^2x+cos^2x)^2-2(sinx*cosx)^2=1-2m^2

 

Tuyet
24 tháng 5 2023 lúc 20:51

D) tan2x + cot2x
= (1 - 2)(-sin2x/2 + 1/2)2):(-sin2x/2 + 1/2)2
= (1 - 2sin2x)/sin2x.cos2x
= (m2 - 3)/2

nguyen vu toan
Xem chi tiết
Nguyễn Thị Anh
24 tháng 6 2016 lúc 21:25

Hỏi đáp Toán