Đơn giản biểu thức : O = \(\frac{cot^2x-cos^2x}{cot^2x}+\frac{sinx.cosx}{cotx}\)
chứng minh đẳng thức lượng giác sau không phụ thuộc vào x:\(\frac{tan^2x-cos^2x}{sin^2x}+\frac{cot^2x-sin^2x}{cos^2x}+\left(tanx-cotx\right)^2-\left(tanx+cotx\right)^2\)
Đơn giản biểu thức
(Cos^2x-sin^2x)/ (cot^2-tan^2x)
-cos^2x
\(\frac{cos^2x-sin^2x}{cot^2x-tan^2x}-cos^2x=\frac{cos^2x-sin^2x}{\frac{cos^2x}{sin^2x}-\frac{sin^2x}{cos^2x}}-cos^2x\)
\(=\frac{cos^2x.sin^2x\left(cos^2x-sin^2x\right)}{cos^4x-sin^4x}-cos^2x=\frac{cos^2x.sin^2x\left(cos^2x-sin^2x\right)}{\left(cos^2x-sin^2x\right)\left(cos^2x+sin^2x\right)}-cos^2x\)
\(=cos^2x.sin^2x-cos^2x=cos^2x\left(sin^2x-1\right)\)
\(=cos^2x.\left(-cos^2x\right)=-cos^4x\)
Chứng minh đẳng thức
(tan^3x/sin^2x)-(1/sinx.cosx)+ (cot^3x/cos^2x)=tan^3x+cot^3x
\(\frac{tan^3x}{sin^2x}-\frac{1}{sinx.cosx}+\frac{cot^3x}{cos^2x}=tan^3x\left(1+cot^2x\right)-\frac{1}{sinx.cosx}+cot^3x\left(1+tan^2x\right)\)
\(=tan^3x+tanx+cot^3x+cotx-\frac{1}{sinx.cosx}\)
\(=tan^3x+cot^3x+\frac{sinx}{cosx}+\frac{cosx}{sinx}-\frac{1}{sinx.cosx}\)
\(=tan^3x+cot^3x+\frac{sin^2x+cos^2x}{sinx.cosx}-\frac{1}{sinx.cosx}\)
\(=tan^3x+cot^3x\)
tính gía trị biểu thức
\(sinx.cosx+\frac{sin^2x}{1+cotx}+\frac{cos^2x}{1+tanx}\)
với x lá 1 gọc nhọn
Bài 1 :
a , Cho \(cotx=\frac{1}{2}\) . Tính \(E=\frac{1}{\sin^2x-\sin x.\cos x+\cos^2x}\)
b , Cho \(\tan x+\cot x=2\) . Tính:
A= \(\tan^2x+\cot^2x\)
B = \(\tan^3x+\cot^3x\)
\(E=\frac{\frac{1}{sin^2x}}{1-\frac{cosx}{sinx}+\frac{cos^2x}{sin^2x}}=\frac{1+cot^2x}{1-cotx+cot^2x}=\frac{1+\frac{1}{4}}{1-\frac{1}{2}+\frac{1}{4}}=...\)
\(A=tan^2x+cot^2x=\left(tanx+cotx\right)^2-2=4-2=2\)
\(B=\left(tanx+cotx\right)^3-3tanx.cotx\left(tanx+cotx\right)=2^3-3.1.2=2\)
CMR:
a, \(\frac{\cot^2x-\sin^2x}{\cot^2x-tan^2x}=sin^2x.\cos^2x\)
b, \(\frac{\tan x}{1-\tan^2x}.\frac{\cot^2-1}{\cot x}=1\)
c, \(\frac{1+\sin x.\cos x}{\sin^2x-\cos^2x}=\frac{\tan x+1}{\cot x+1}\)
d, \(\frac{\sin x+\cos x-1}{\sin x-cosx+1}=\frac{\cos x}{1+sinx}\)
1+tanx=\(\frac{1}{cos^2x}\)
1+\(cos^2x\)=\(\frac{1}{sin^2x}\)
\(\frac{1}{tanx+1}+\frac{1}{cotx+1}\)= 1
\(\frac{tan^2x-cos^2x}{sin^2x}+\frac{cot^2x-sin^2x}{cos^2x}=2\)
CM GIÙM E CẦN GẤP
a/ Tớ làm bên dưới rồi
b/ \(\frac{1}{sin^2x}=\frac{sin^2x+cos^2x}{sin^2x}=\frac{\frac{sin^2x}{sin^2x}+\frac{cos^2x}{sin^2x}}{\frac{sin^2x}{sin^2x}}=1+cot^2x\)(đpcm)
c/ \(\frac{1}{tanx+1}+\frac{1}{cotx+1}=\frac{cotx+1+tanx+1}{\left(tanx+1\right)\left(cotx+1\right)}=\frac{tanx+cotx+2}{tanx.cotx+tanx+cotx+1}\)
\(=\frac{tanx+cotx+2}{tanx+cotx+2}=1\left(đpcm\right)\)
d/ \(\frac{tan^2x-cos^2x}{sin^2x}+\frac{cot^2x-sin^2x}{cos^2x}=\frac{tan^2x}{sin^2x}-\frac{cos^2x}{sin^2x}+\left(\frac{cot^2x}{cos^2x}-\frac{sin^2x}{cos^2x}\right)\)
\(=\frac{\frac{sin^2x}{cos^2x}}{sin^2x}-\frac{cos^2x}{sin^2x}+\frac{\frac{cos^2x}{sin^2x}}{cos^2x}-\frac{sin^2x}{cos^2x}\)
\(=\frac{1}{cos^2x}-cot^2x+\frac{1}{sin^2x}-tan^2x\)
\(=1+tan^2x-cot^2x+\left(1+cot^2x\right)-tan^2x\)
\(=1+tan^2x-cot^2x+1+cot^2x-tan^2x=2\left(đpcm\right)\)
giúp e câu nỳ vs e cần gấp
Tìm X biết:
TanX+CosX=2
Cho \(sinx+cosx=m\) Tính theo m giá trị biểu thức
\(a,A=sinx.cosx\\ b,B=\left|sinx-cosx\right|\\ c,C=sin^4x+cos^4x\\ d,D=tan^2x+cot^2x\)
a: A=(sinx+cosx)^2-1=m^2-1
b: B=căn (sinx+cosx)^2-4sinxcosx=căn m^2-4(m^2-1)=căn -3m^2+4
c: C=(sin^2x+cos^2x)^2-2(sinx*cosx)^2=1-2m^2
D) tan2x + cot2x
= (1 - 2)(-sin2x/2 + 1/2)2):(-sin2x/2 + 1/2)2
= (1 - 2sin2x)/sin2x.cos2x
= (m2 - 3)/2
\(\frac{cos^2x}{1-tanx}+\frac{sin^2x}{1-cotx}=1-sinx.cosx\)