Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Hoàng Thơ
Xem chi tiết

hình bạn tự vé nhé.

tam giác ABC vuông tại A nên theo định lý PY-Ta-Go ta có:

\(AB^2+AC^2=BC^2\)

\(\Rightarrow6^2+8^2=BC^2\)

\(\Rightarrow BC=10\left(DO-BC>0\right)\)

b) xét \(\Delta ABC\) VÀ  \(\Delta HBA\) CÓ:

\(\widehat{BAC}=\widehat{AHB}\)

\(\widehat{B}\) CHUNG

\(\Rightarrow\Delta ABC\) đồng dạng vs  \(\Delta HBA\)

Khách vãng lai đã xóa

c)sửa đề:\(AB^2=BH.BC\)

TA CÓ: \(\Delta ABC\text{ᔕ}\Delta HBA\)

\(\Rightarrow\frac{AB}{BH}=\frac{BC}{AB}\left(tsđd\right)\)

\(\Rightarrow AH^2=BH.BC\)

Khách vãng lai đã xóa
ミ★Zero ❄ ( Hoàng Nhật )
19 tháng 3 2022 lúc 17:46

bạn kia làm 2 câu đầu mình làm 2 câu cuối nhé :

c, \(\Delta AHB~\Delta CAB\)

\(\Rightarrow\frac{AB}{BC}=\frac{BH}{AB}\Rightarrow AB^2=BC.BH\)

\(\Rightarrow BH=\frac{AB^2}{BC}=3,6cm\)

\(\Rightarrow HC=6,4cm\)

d, AD phân giác \(\Delta ACB\)

\(\Rightarrow\frac{DC}{DB}=\frac{AC}{AB}=\frac{8}{6}=\frac{4}{3}\)( 1 )

\(\Rightarrow DC+DB=BC=10cm\)( 2 )

Từ ( 1 ) và ( 2 ) \(\Rightarrow DB=\frac{30}{7}cm\)

AD bạn tính nốt nhé

Khách vãng lai đã xóa
nguyễn thu hằng
Xem chi tiết
Sakugan no Shana
Xem chi tiết
Nguyễn Phương Thảo
25 tháng 4 2018 lúc 20:57

a) xét tam giác ABC và tam giác HAC có:

góc C chung

góc BAC = góc AHC (=90độ)

=> ΔABC ∼ ΔHAC (gg)

b) vì ΔABC ∼ ΔHAC (câu a)

=> \(\dfrac{AB}{HB}=\dfrac{BC}{BA}\)(CÁC CẠNH T/Ứ TỈ LỆ)

=> AB.AB= HB.BC

=> \(AB^2\)= HB.BC

Nhi Ngải Thiên
Xem chi tiết
Nguyễn Lê Phước Thịnh
22 tháng 6 2023 lúc 22:40

2:

a: Xét ΔHAB vuông tại H và ΔHCA vuông tại H có

góc HAB=góc HCA

=>ΔHAB đồng dạng với ΔHCA

=>HA/HC=HB/HA

=>HA^2=HB*HC

b: BC=4+9=13cm

AH=căn 4*9=6cm

S ABC=1/2*6*13=39cm2

Minh Tâm Nguyễn
Xem chi tiết
Nguyễn Lê Phước Thịnh
10 tháng 5 2023 lúc 20:21

a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có

góc B chung

=>ΔHBA đồng dạng với ΔABC

Lan Anh Nguyễn Hoàng
Xem chi tiết
Bé Của Nguyên
20 tháng 4 2018 lúc 21:12

a) ADĐL pitago vào tam giác vuông DCB , có :

BC2 + DC2 = DB2

=> 62 + 82 = BD2

=> BD2 = 100

=> BD = 10 cm

b)

Xét tam giác ADB và tam giác AHD , có :

A^ = H^ = 90O

D^ ; góc chung

=> tam giác AHD ~ tam giác BAD (g.g)

c)

Vì tam giác AHD ~ tam giác BAD ( câu b )

=> \(\dfrac{AD}{HD}\)= \(\dfrac{BD}{AD}\)

=> AD2 = HD . BD

d)

Kudo Henry
20 tháng 4 2018 lúc 19:27

a) ΔABD vuông tại A (ABCD là hình chữ nhật)

⇒DB2=AB2+AD2(Đinh lí pitago)

DB2=82+62

⇔DB=\(\sqrt{100}\)=10(cm)

Bé Của Nguyên
20 tháng 4 2018 lúc 21:29

d) Ta có :

A^1 + B^1 = 90o

B^1 + B^2 = 90o

=> A^1 = B^2

Xét tam giác AHB và tam giác BDC , có :

H^ = C^ = 90O

A^1 =B^2 (cmt)

=> tam giác HBA ~ tam giác CDB (g.g)

e) Vì tam giác HBA ~ tam giác CDB ( câu d ) , ta có :

\(\dfrac{AH}{BC}\)= \(\dfrac{AB}{DB}\)

=> \(\dfrac{AH}{6}\)= \(\dfrac{8}{10}\)

=> AH = 4,8 cm

ADĐL pita go vào tam giác vuông ADH , có :

AH2 + DH2 = AD2

=> 4,82 + DH2 = 62

=> DH2 = 12,96

=> DH = 3,6 cm

Nguyễn Nho Bảo Trí
Xem chi tiết
Trần L.Tuyết Mai
6 tháng 5 2021 lúc 11:36

undefinedundefined

hnamyuh
6 tháng 5 2021 lúc 11:41

a) Ta có :

AD = BC = 6 cm

Áp dụng hệ thức lượng trong tam giác ABD vuông tại A, ta có :

1/AD^2 + 1/AB^2 = 1/AH^2

<=> 1/6^2 + 1/8^2 = 1/AH^2

<=> AH = 4,8(cm)

b)

Áp dụng Pitago trong tam giác BCD vuông tại C có :

BC^2 + CD^2 = BD^2

<=> 6^2 + 8^2 = DB^2

<=> BD = 10(cm)

Xét hai tam giác vuông AHB và BCD có :

AH/BC = 4,8/6 = 4/5

AB/BD = 8/10 = 4/5

Do đó tam giác AHB đồng dạng với tam giác BCD

Nguyễn Nho Bảo Trí
6 tháng 5 2021 lúc 11:17

Giúp mình với 

𝓚. 𝓢𝓸𝔀𝓮
Xem chi tiết
Thùy Linh
Xem chi tiết
Kien Nguyen
2 tháng 4 2018 lúc 19:24

Hỏi đáp ToánHỏi đáp ToánHỏi đáp ToánHỏi đáp Toán