a) xét tam giác ABC và tam giác HAC có:
góc C chung
góc BAC = góc AHC (=90độ)
=> ΔABC ∼ ΔHAC (gg)
b) vì ΔABC ∼ ΔHAC (câu a)
=> \(\dfrac{AB}{HB}=\dfrac{BC}{BA}\)(CÁC CẠNH T/Ứ TỈ LỆ)
=> AB.AB= HB.BC
=> \(AB^2\)= HB.BC
a) xét tam giác ABC và tam giác HAC có:
góc C chung
góc BAC = góc AHC (=90độ)
=> ΔABC ∼ ΔHAC (gg)
b) vì ΔABC ∼ ΔHAC (câu a)
=> \(\dfrac{AB}{HB}=\dfrac{BC}{BA}\)(CÁC CẠNH T/Ứ TỈ LỆ)
=> AB.AB= HB.BC
=> \(AB^2\)= HB.BC
Cho Δ ABC vuông tại A, biết AB = 9cm, AC = 12cm. Từ A kẻ đường cao AH xuống cạnh BC.
a) Chứng minh Δ ABC ∼ Δ HAC
b) Chứng minh \(AC^2=BC.HC\)
c) Tính HC, BH, AH.
Cho \(\Delta\)ABC vuông tại A có AB=12cm , AC=16cm . Vẽ đường cao AH
a) Chứng minh \(\Delta\)HBA \(\sim\) \(\Delta\)ABC
b) Tính BC,AH ?
c) Vẽ đường phân giác AD của tam giác ABC ( D thuộc BC ) . Trong \(\Delta\)ADB kẻ phân giác DE ( E\(\in\)AB ). Trong \(\Delta\)ADC kẻ phân giác DF ( F\(\in\)AC ). Chứng minh \(\dfrac{EA}{EB}\times\dfrac{DB}{DC}\times\dfrac{FC}{FA}=1\)
Cho tam giác ABC vuông tại A, vẽ đường cao AH(H∈BC).
a)Chứng minh: ΔHBAᔕΔABC
b)Chứng minh:ΔHBAᔕΔHAC .Suy ra: AH2=BH.HC
c)Kẻ HD⊥AB và HE⊥AC (D∈AB,E∈AC). Chứng minh: ΔAEDᔕΔABC
d)Nếu AB.AC=4AD.AE thì ΔABC là tam giác gì?
Bài 1 : Cho Δ ABC có 3 góc nhọn , AB = 2cm , AC = 4cm . Trên cạnh AC lấy điểm M sao cho \(\widehat{ABM}=\widehat{ACB}\) .
a, Chứng minh : Δ ABM ∼ ΔACB
b, Tính AM
c, Từ A kẻ AH ⊥ BC , AK ⊥ BM . Chứng minh AB.AK=AM.AH
d , chứng ming rằng : SAHB = 4SAKM
Bài 2 : Cho Δ ABC vuông tại A , có \(\widehat{B}=\widehat{2C}\) , đường cao AD .
a, Chứng minh : ΔADB ∼ ΔCAB
b, Kẻ tia phân giác \(\widehat{ABC}\) cắt AD tại F và AC tại E . Chứng minh AB2 = AE.AC
c, Chứng minh : \(\frac{DF}{FA}=\frac{AE}{EC}\)
d, Tính tỷ số diện tích của ΔBFC và ΔABC .
Bài 3 : Cho tam giác ABC vuông tại A , đường cao AH chia cạnh huyền BC thành hai đoạn BH = 9cm và CH =16cm .
a, Chứng minh : ΔABH ∼ ΔCAH ; Tính diện tích ΔABC
b, Gọi M , N lần lượt là trung điểm của AH và HC . Đường thẳng BM cắt AN tại K . Chứng minh : MK là đường cao của ΔAMN .
c, Gọi D là điểm đối xứng của C qua điểm A . Chứng minh : AB.DH= 2AD.BM
các bạn ơi ! giúp mình với đi !!!!!!!!!!!!!!!!!!!!
Cho tam giác ABC vuông tại A, đường cao AH. Cho biết AB = 15cm, AH = 12cm.
a) Chứng minh \(\Delta ABH\sim\Delta CAH\).
b) Tính BH, CH, AC.
c) Trên cạnh AC lấy điểm E sao cho CE = 5cm, trên cạnh BC lấy điểm F sao cho CF = 4cm. Chứng minh tam giác CEF vuông.
d) Chứng minh CE.CA = CF.CB.
Cho tam giác ABC vuông tại A ( AB < AC). Đường cao AH và đường phân giác BD cắt nhau tại E.
a) Chứng minh: ΔABC và ΔHBA đồng dạng.
b) Biết BH= 9cm; Ch= 16cm. Tính AB.
c) Chứng minh: BA.BD=BE.BC
d) Vẽ đường phân giác AK của tam giác HAC. Chứng minh : DK song song với AH.
Cho tam giác ABC vuông tại A, đường cao AH, AB = 6cm, AC = 8cm.
a) Tính AH, HB, HC
b) Gọi M là trung điểm của BC, D và E là hình chiếu của H trên AB, AC. Chứng minh AD.AB = AE.AC. Từ đó suy ra \(\Delta AED\) đồng dạng \(\Delta ABC\)
c) Chứng minh \(DE\perp AM\)
cho tam giác ABC vuông tại A có AB=12cm , AC =16cm .Kẻ đường cao AH và đường phân giác AD của tam giác
a)chứng minh ΔHBA∼ΔABC
b)tìm tỉ số diện tích ΔABD va ΔADC
c)tính BC,CD,AH
Cho \(\Delta\)ABC vuông tại A, đường cao AH.
a) Chứng minh: \(\Delta\)ABC \(\sim\)\(\Delta\)HAC
b) Chứng minh: AC 2 = BC . HC
c) Biết AB = 6cm, AC = 8cm. Tính đọi dài CH, AH.
(P/S: vẽ hình giúp mk nha. Cảm iwn mọi người nhiều!!!!)