Chứng minh:
a) 10.x2 - 5.x + 1 \(\ge\) x2 + x
b) a2 + b2 + c2 \(\ge\) a.b + a.c + b.c
giúp mình ạ mình cần gấp, cảm ơn
Chứng minh rằng nếu: x+y=1 thì x2 = y2 \(\ge\) \(\dfrac{1}{2}\)
Mình đang cần gấp. Mong mn giúp đỡ ạ ^^
Cho a + b + c = a2 + b2 + c2 = 1 và\(\dfrac{x}{a}\)=\(\dfrac{y}{b}\)=\(\dfrac{z}{c}\)( a≠0,b≠0,c≠0 )
Chứng minh rằng (x+y+z)2=x2+y2+z2
Giúp mình với ạ, mai mình thi rồi !!!!
chứng minh: a2+b2+c2\(\ge\)ab+bc+ca với mọi a,b,c
=>2a^2+2b^2+2c^2-2ab-2bc-2ac>=0
=>(a-b)^2+(b-c)^2+(a-c)^2>=0(luôn đúng)
Xét hiệu a^2+b^2+c^2-ab-ac-bc=1/2.2(a^2+b^2+c^2-ab-ac-bc)
=1/2(2a^2+2b^2+2c^2-2ab-2ac-2bc)
=1/2[(a^2-2ab+b^2)+(a^2-2ac+c^2)+(b^2-2bc+c^2)]
=1/2.[(a-b)^2+(a-c)^2+(b-c)^2]
vì (a-b)^2+(a-c)^2+(b-c)^2>=0
nên 1/2.[(a-b)^2+(a-c)^2+(b-c)^2]>=0
hay a^2+b^2+c^2-ab-ac-bc >=0<=> a^2+b^2+c^2>=ab+ac+bc
a) Cho các số a, b, c thỏa mãn:a + b + c = 3/2. Chứng minh rằng: a2 + b2 + c2 ≥ 3/4.
b) Tìm giá trị nhỏ nhất của biểu thức P = x2 + 2y2 + 2xy – 6x – 8y + 2028?
Khởi động nhẹ nhàng thôi:v
\(a^2+b^2+c^2\ge\dfrac{3}{4}\)
\(\Rightarrow a^2+b^2+c^2-a-b-c\ge\dfrac{3}{4}-\dfrac{3}{2}=-\dfrac{3}{4}\)
\(\Rightarrow\left(a^2-a+\dfrac{1}{4}\right)+\left(b^2-b+\dfrac{1}{4}\right)+\left(c^2-c+\dfrac{1}{4}\right)\ge0\)
\(\Rightarrow\left(a-\dfrac{1}{2}\right)^2+\left(b-\dfrac{1}{2}\right)^2+\left(c-\dfrac{1}{2}\right)^2\ge0\) (đúng)
\("="\Leftrightarrow a=b=c=\dfrac{1}{2}\)
a) C1. Áp dụng BĐT : ( x - y)2 ≥ 0 ∀xy
Ta có : a2 + b2 ≥ 2ab ( 1)
b2 + c2 ≥ 2bc ( 2)
c2 + a2 ≥ 2ac ( 3)
Từ ( 1 ; 2 ; 3) ⇒ 2( a2 + b2 + c2) ≥ 2( ab + ab + ac)
⇔ 3( a2 + b2 + c2) ≥ ( a + b + c)2
⇔ a2 + b2 + c2 ≥ \(\dfrac{\left(a+b+c\right)^2}{3}=\dfrac{9}{4}.\dfrac{1}{3}=\dfrac{3}{4}\)
Đẳng thức xảy ra khi và chỉ khi : a = b = c = \(\dfrac{1}{2}\)
C2. Áp dụng BĐT Bunhiacopxki , ta có :
( a2 + b2 + c2)( 12 + 12 + 12) ≥ ( a + b + c)2
⇔ a2 + b2 + c2 ≥ \(\dfrac{\left(a+b+c\right)^2}{3}=\dfrac{9}{4}.\dfrac{1}{3}=\dfrac{3}{4}\)
Đẳng thức xảy ra khi và chỉ khi : a = b = c = \(\dfrac{1}{2}\)
4. Tìm giá trị lớn nhất của các biểu thức a. A = 5 – 8x – x2 b. B = 5 – x2 + 2x – 4y2 – 4y 5. a. Cho a2 + b2 + c2 = ab + bc + ca chứng minh rằng a = b = c b. Tìm a, b, c biết a2 – 2a + b2 + 4b + 4c2 – 4c + 6 = 0 6. Chứng minh rằng: a. x2 + xy + y2 + 1 > 0 với mọi x, y b. x2 + 4y2 + z2 – 2x – 6z + 8y + 15 > 0 Với mọi x, y, z 7. Chứng minh rằng: x2 + 5y2 + 2x – 4xy – 10y + 14 > 0 với mọi x, y.
cho a,b,c là độ dài 3 cạnh của tam giác , chứng minh :
a3+b3+c3+2abc < a(b2+c2)+b(a2+c2)+c(a2+b2) < a3+b3+c3+3abc
mình cần gấp lắm , mn giúp mình với
Câu 1.
a) Chứng minh: (ac + bd)2 + (ad – bc)2 = (a2 + b2)(c2 + d2)
b) Chứng minh bất dẳng thức Bunhiacôpxki: (ac + bd)2 ≤ (a2 + b2)(c2 + d2)
Câu 2.
Cho x + y = 2. Tìm giá trị nhỏ nhất của biểu thức: S = x2 + y2.
\(1.a,\left(ac+bd\right)^2+\left(ad-bc\right)^2\)
\(=\left(ac\right)^2+2abcd+\left(bd\right)^2+\left(ad\right)^2-2abcd+\left(bc\right)^2\)
\(=a^2\left(c^2+d^2\right)+b^2\left(c^2+d^2\right)=\left(a^2+b^2\right)\left(c^2+d^2\right)\)
\(b,\left(ac+bd\right)^2\le\left(a^2+b^2\right)\left(c^2+d^2\right)\)
\(\Leftrightarrow\left(a^2+b^2\right)\left(c^2+d^2\right)-\left(ad-bc\right)^2\le\left(a^2+b^2\right)\left(c^2+d^2\right)\)
\(\Leftrightarrow-\left(ad-bc\right)^2\le0\left(luôn-đúng\right)\)
\(dấu"='\) \(xảy\) \(ra\Leftrightarrow\dfrac{a}{c}=\dfrac{b}{d}\)
\(c2:x+y=2\Rightarrow\left(x+y\right)^2=4\)
\(\Rightarrow\left(x+y\right)^2+\left(x-y\right)^2\ge4\)
\(\Leftrightarrow x^2+2xy+y^2+x^2-2xy+y^2\ge4\)
\(\Leftrightarrow2\left(x^2+y^2\right)\ge4\Leftrightarrow x^2+y^2\ge2\)
\(dấu"="\) \(xảy\) \(ra\Leftrightarrow x=y=1\)
Câu 1:
a)Ta có (ac+bd)2+(ad-bc)2=(ac)2+2abcd+(bd)2+(ad)2-2abcd+(bc)2
=(ac)2+(bd)2+(ad)2+(bc)2
=a2(c2+d2)+b2(c2+d2)
=(a2+b2)(c2+d2) (đpcm)
b)Ta có (ac+bd)2 = (ac)2+2abcd+(bd)2
Lại có (a2+b2)(c2+d2) = (ac)2+(bd)2+(ad)2+(bc)2
Ta có (ac+bd)2 ≤ (a2+b2)(c2+d2)
<=>(a2+b2)(c2+d2) - (ac+bd)2 ≥ 0
<=>(ac)2+(bd)2+(ad)2+(bc)2-[(ac)2+2abcd+(bd)2]
<=>(ad)2 - 2abcd +(bc)2 ≥ 0
<=>(ad-bc)2 ≥ 0 (Luôn đúng) => đpcm
Câu 2:
Áp dụng BĐT Bunhiacôpxki, ta có (x+ y)2 ≤ (x2 + y2)(12 + 12) => 4 ≤ 2.S => 2 ≤ S
Dấu ''='' xảy ra <=> x=y=1
Vậy Min S=2 <=> x=y=1
Cho a,b,c là các số thực không âm thỏa mãn a2+b2+c2+abc=4 .Chứng minh rằng :
\(abc+2\ge ab+bc+ca\ge abc\)
Giả sử \(c\le1\).
Khi đó: \(ab+bc+ca-abc=ab\left(1-c\right)+c\left(a+b\right)\ge0\)
\(\Rightarrow ab+bc+ca\ge abc\left(1\right)\)
Đẳng thức xảy ra chẳng hạn với \(a=2,b=c=0\).
Theo giả thiết:
\(4=a^2+b^2+c^2+abc\ge2ab+c^2+abc\)
\(\Leftrightarrow ab\left(c+2\right)\le4-c^2\)
\(\Leftrightarrow ab\le2-c\)
Trong ba số \(\left(a-1\right),\left(b-1\right),\left(c-1\right)\) luôn có hai số cùng dấu.
Không mất tính tổng quát, giả sử \(\left(a-1\right)\left(b-1\right)\ge0\).
\(\Rightarrow ab-a-b+1\ge0\)
\(\Leftrightarrow ab\ge a+b-1\)
\(\Leftrightarrow abc\ge ca+bc-c\)
\(\Rightarrow abc+2\ge ca+bc+2-c\ge ab+bc+ca\left(2\right)\)
Từ \(\left(1\right)\) và \(\left(2\right)\Rightarrow\) Bất đẳng thức được chứng minh.
Câu 1. Chứng minh √7 là số vô tỉ.
Câu 2.
a) Chứng minh: (ac + bd)2 + (ad – bc)2 = (a2 + b2)(c2 + d2)
b) Chứng minh bất dẳng thức Bunhiacôpxki: (ac + bd)2 ≤ (a2 + b2)(c2 + d2)
Câu 3. Cho x + y = 2. Tìm giá trị nhỏ nhất của biểu thức: S = x2 + y2.
Câu 4.
a) Cho a ≥ 0, b ≥ 0. Chứng minh bất đẳng thức Cauchy:
ai nhanh nhất và đúng nhất sẽ cho tic đúng