Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
☆Châuuu~~~(๑╹ω╹๑ )☆
Xem chi tiết
Dark_Hole
18 tháng 3 2022 lúc 21:22

à bài này a nhớ (hay mất điểm ở bài này) ;v

Tuan Nguyen
18 tháng 3 2022 lúc 21:23

xinloi cậu tớ muốn giúp lắm mà tớ ngu toán:)

Dark_Hole
18 tháng 3 2022 lúc 21:32

a)Ta có \(2x-mx+2m-1=0\\ =>x\left(2-m\right)+2m-1=0\)

Để pt có nghiệm duy nhất thì \(a\ne0=>2-m\ne0\\=>m\ne2\)

b)Ta có \(mx+4=2x+m^2\\ =>mx+4-2x+m^2=0\\ =>\left(m-2\right)x=m^2-4\)

Để pt vô số nghiệm thì \(\left\{{}\begin{matrix}m-2=0\\m^2-4=0\end{matrix}\right.=>\left\{{}\begin{matrix}m=2\\m=\pm2\end{matrix}\right.\)\(=>m=2\)

c)Để pt có nghiệm duy nhất thì \(m^2-4\ne0>m\ne\pm2\)

Chắc vậy :v

Đỗ Xuân Tuấn Minh
Xem chi tiết
Hoàng Nguyễn Văn
4 tháng 1 2020 lúc 9:33

a) 2x-mx+2m-1=0

\(\Leftrightarrow x\left(2-m\right)=1-2m\left(1\right)\)

*Nếu \(m=2\)thay vào (1) ta được:

\(x\left(2-2\right)=1-2\cdot2\Leftrightarrow0x=-3\)

Với \(m=\frac{1}{2}\) ,pt trên vô nghiệm.

*Nếu \(m\ne2\)thì phương trình (1) có nghiệm  \(x=\frac{1-2m}{2-m}\)

Vậy  \(m\ne2\)thì phương trình có nghiệm duy nhất \(x=\frac{1-2m}{2-m}\)

b)c) mình biến đổi thôi, phần lập luận bạn tự lập luận nhé 

b)\(mx+4=2x+m^2\Leftrightarrow mx-2x=m^2-4\Leftrightarrow x\left(m-2\right)=\left(m-2\right)\left(m+2\right)\)

*Nếu \(m\ne2\).....pt có ngiệm x=m+2

*Nếu \(m=2\)....pt có vô số nghiệm

Vậy ....

c)\(\left(m^2-4\right)x+m-2=0\Leftrightarrow\left(m-2\right)\left(m+2\right)x=-\left(m-2\right)\)

Nếu \(m=2\).... pt có vô số nghiệm

Nếu \(m=-2\)..... pt vô nghiệm

Nếu \(m\ne\pm2\).... pt có nghiệm \(x=-m-2\)

Để nghiệm  \(x=-m-2\)dương \(\Leftrightarrow m+2< 0\Leftrightarrow m< -2\ne\pm2\)

Vậy m<-2

Khách vãng lai đã xóa
Nhi Nguyen
Xem chi tiết
Bùi Doãn Nhật Quang
Xem chi tiết
Đạt Nguyễn Tiến
Xem chi tiết
Nguyễn Lê Phước Thịnh
22 tháng 2 2022 lúc 17:22

Trường hợp 1: m=0

Phương trình sẽ là:

\(0x^2-2\cdot\left(0-1\right)x+0-3=0\)

=>2x-3=0

hay x=3/2

=>Phương trình có đúng một nghiệm dương, còn hai trường hợp còn lại thì ko đúng

Trường hợp 2: m<>0

a: 

Để phương trình có hai nghiệm trái dấu thì m(m-3)<0

hay 0<m<3

b:\(\Delta=\left(2m-2\right)^2-4m\left(m-3\right)\)

\(=4m^2-8m+4-4m^2+12m\)

=4m+4

Để phương trình có hai nghiệm dương phân biệt thì \(\left\{{}\begin{matrix}m>-1\\\dfrac{2\left(m-1\right)}{m}>0\\\dfrac{m-3}{m}>0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}-1< m< 0\\m>3\end{matrix}\right.\)

Hoàng
Xem chi tiết
Trần Minh Hoàng
11 tháng 3 2021 lúc 19:30

Để pt có 2 nghiệm dương phân biệt thì \(\left\{{}\begin{matrix}\Delta=m^2-4\left(m+3\right)>0\\m>0\\m+3>0\end{matrix}\right.\Leftrightarrow m>6\).

Etermintrude💫
11 tháng 3 2021 lúc 19:32

undefined

Bảo Minh
Xem chi tiết

a: \(x^2+\left(2m+1\right)x+m^2-3=0\)

\(\text{Δ}=\left(2m+1\right)^2-4\left(m^2-3\right)\)

\(=4m^2+4m+1-4m^2+12=4m+13\)

Để phương trình có nghiệm kép thì 4m+13=0

=>\(m=-\dfrac{13}{4}\)

Thay m=-13/4 vào phương trình, ta được:

\(x^2+\left(2\cdot\dfrac{-13}{4}+1\right)x+\left(-\dfrac{13}{4}\right)^2-3=0\)

=>\(x^2-\dfrac{11}{2}x+\dfrac{121}{16}=0\)

=>\(\left(x-\dfrac{11}{4}\right)^2=0\)

=>x-11/4=0

=>x=11/4

b: TH1: m=2

Phương trình sẽ trở thành \(\left(2+1\right)x+2-3=0\)

=>3x-1=0

=>3x=1

=>\(x=\dfrac{1}{3}\)

=>Khi m=2 thì phương trình có nghiệm kép là x=1/3

TH2: m<>2

\(\text{Δ}=\left(m+1\right)^2-4\left(m-2\right)\left(m-3\right)\)

\(=m^2+2m+1-4\left(m^2-5m+6\right)\)

\(=m^2+2m+1-4m^2+20m-24\)

\(=-3m^2+22m-23\)

Để phương trình có nghiệm kép thì Δ=0

=>\(-3m^2+22m-23=0\)

=>\(m=\dfrac{11\pm2\sqrt{13}}{3}\)

*Khi \(m=\dfrac{11+2\sqrt{13}}{3}\) thì \(x_1+x_2=\dfrac{-m-1}{m-2}=\dfrac{2-2\sqrt{13}}{3}\)

=>\(x_1=x_2=\dfrac{1-\sqrt{13}}{3}\)

*Khi \(m=\dfrac{11-2\sqrt{13}}{3}\) thì \(x_1+x_2=\dfrac{-m-1}{m-2}=\dfrac{2+2\sqrt{13}}{3}\)

=>\(x_1=x_2=\dfrac{1+\sqrt{13}}{3}\)

c: TH1: m=0

Phương trình sẽ trở thành

\(0x^2-\left(1-2\cdot0\right)x+0=0\)

=>-x=0

=>x=0

=>Nhận

TH2: m<>0

\(\text{Δ}=\left(-1+2m\right)^2-4\cdot m\cdot m\)

\(=4m^2-4m+1-4m^2=-4m+1\)

Để phương trình có nghiệm kép thì -4m+1=0

=>-4m=-1

=>\(m=\dfrac{1}{4}\)

Khi m=1/4 thì \(x_1+x_2=\dfrac{-b}{a}=\dfrac{-\left[-1+2m\right]}{m}=\dfrac{-2m+1}{m}\)

=>\(x_1+x_2=\dfrac{-2\cdot\dfrac{1}{4}+1}{\dfrac{1}{4}}=\dfrac{-\dfrac{1}{2}+1}{\dfrac{1}{4}}=\dfrac{1}{2}:\dfrac{1}{4}=2\)

=>\(x_1=x_2=\dfrac{2}{2}=1\)

long bi
Xem chi tiết