Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
sơn lê
Xem chi tiết
Lil Shroud
Xem chi tiết
Bình Trần Thị
Xem chi tiết
Bình Trần Thị
Xem chi tiết
vvvvvvvv
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
11 tháng 4 2019 lúc 2:17

Chọn B

Julian Edward
Xem chi tiết
Nguyễn Việt Lâm
1 tháng 7 2020 lúc 22:21

a/ \(P=sin^2x+cos^2x+cos^2x=1+cos^2x\)

\(0\le cos^2x\le1\Rightarrow1\le P\le2\)

\(P_{min}=1\) khi \(cosx=0\)

\(P_{max}=2\) khi \(cosx=\pm1\)

b/ \(P=8sin^2x+3\left(1-2sin^2x\right)=3+2sin^2x\)

\(0\le sin^2x\le1\Rightarrow3\le P\le5\)

\(P_{min}=3\) khi \(sinx=0\)

\(P_{max}=5\) khi \(sinx=\pm1\)

c/ \(P=\left(sin^2x-cos^2x\right)\left(sin^2x+cos^2x\right)=sin^2x-cos^2x=-cos2x\)

\(-1\le cos2x\le1\Rightarrow-1\le P\le1\)

\(P_{min}=-1\) khi \(cos2x=1\)

\(P_{max}=1\) khi \(cos2x=-1\)

d/ \(P=\left(sin^2x+cos^2x\right)^3-3sin^2x.cos^2x\left(sin^2x+cos^2x\right)\)

\(=1-3sin^2x.cos^2x=1-\frac{3}{4}\left(2sinx.cosx\right)^2=1-\frac{3}{4}sin^22x\)

\(0\le sin^22x\le1\Rightarrow\frac{1}{4}\le P\le1\)

\(P_{min}=\frac{1}{4}\) khi \(sin2x=\pm1\)

\(P_{max}=1\) khi \(sin2x=0\)

Lê Hoài Nam
Xem chi tiết
Muichirou- san
Xem chi tiết
Nguyễn Lê Phước Thịnh
8 tháng 10 2023 lúc 18:30

\(M=x^4-x^3-x^3+x^2+x^2-2x+1\)

\(=x^3\left(x-1\right)-x^2\left(x-1\right)+\left(x-1\right)^2\)

\(=\left(x-1\right)\left(x^3-x^2\right)+\left(x-1\right)^2\)

\(=\left(x-1\right)^2\cdot x^2+\left(x-1\right)^2=\left(x-1\right)^2\left(x^2+1\right)\)

\(\left(x-1\right)^2\ge0\)\(\forall x\)

\(x^2+1\ge1\)\(\forall x\)

Do đó: \(M>=1\)

Dấu = xảy ra khi x=0