Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Thị Bích Ngọc
Xem chi tiết
Yuri
Xem chi tiết
Nguyễn Việt Lâm
19 tháng 9 2021 lúc 16:53

a.

ĐKXĐ: \(x\ne\dfrac{\pi}{2}+k\pi\)

Chia 2 vế cho cosx:

\(tanx+1=\dfrac{1}{cos^2x}\)

\(\Rightarrow tanx+1=1+tan^2x\)

\(\Rightarrow\left[{}\begin{matrix}tanx=0\\tanx=1\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=k\pi\\x=\dfrac{\pi}{4}+k\pi\end{matrix}\right.\)

Nguyễn Việt Lâm
19 tháng 9 2021 lúc 16:56

c.

\(\Leftrightarrow2sin2x+2sin^2x=1\)

\(\Leftrightarrow2sin2x=1-2sin^2x\)

\(\Leftrightarrow2sin2x=cos2x\)

\(\Rightarrow tan2x=\dfrac{1}{2}\)

\(\Rightarrow2x=arctan\left(\dfrac{1}{2}\right)+k\pi\)

\(\Rightarrow x=\dfrac{1}{2}arctan\left(\dfrac{1}{2}\right)+\dfrac{k\pi}{2}\)

Nguyễn Việt Lâm
19 tháng 9 2021 lúc 16:55

b.

\(\Leftrightarrow4sin2x+3sin\left(\dfrac{\pi}{2}-2x\right)=5\)

\(\Leftrightarrow4sin2x+3cos2x=5\)

\(\Leftrightarrow\dfrac{4}{5}sin2x+\dfrac{3}{5}cos2x=1\)

Đặt \(\dfrac{4}{5}=cosa\) với \(a\in\left(0;\dfrac{\pi}{2}\right)\Rightarrow\dfrac{3}{5}=sina\)

\(\Rightarrow sin2x.cosa+cos2x.sina=1\)

\(\Rightarrow sin\left(2x+a\right)=1\)

\(\Rightarrow2x+a=\dfrac{\pi}{2}+k2\pi\)

\(\Rightarrow x=-\dfrac{a}{2}+\dfrac{\pi}{4}+k\pi\)

Trần Khánh Huyền
Xem chi tiết
Nguyễn Việt Lâm
8 tháng 9 2020 lúc 19:40

Đặt \(sinx+cosx=\sqrt{2}sin\left(x+\frac{\pi}{4}\right)=t\) \(\Rightarrow2sinx.cosx=t^2-1\)

Do \(x\in\left[0;\frac{\pi}{2}\right]\Rightarrow x+\frac{\pi}{4}\in\left[\frac{\pi}{4};\frac{3\pi}{4}\right]\) \(\Rightarrow\frac{\sqrt{2}}{2}\le sin\left(x+\frac{\pi}{4}\right)\le1\)

\(\Rightarrow1\le t\le\sqrt{2}\)

Pt trở thành: \(m\left(t+1\right)=t^2\Leftrightarrow m=\frac{t^2}{t+1}\)

Xét \(f\left(t\right)=\frac{t^2}{t+1}\) trên \(\left[1;\sqrt{2}\right]\)

\(f\left(t\right)-\frac{1}{2}=\frac{t^2}{t+1}-\frac{1}{2}=\frac{\left(t-1\right)\left(2t+1\right)}{2\left(t+1\right)}\ge0\Rightarrow f\left(t\right)\ge\frac{1}{2}\)

\(f\left(t\right)-2\sqrt{2}+2=\frac{t^2}{t+1}-2\sqrt{2}+2=\frac{\left(t-\sqrt{2}\right)\left(t+2-\sqrt{2}\right)}{t+1}\le0\Rightarrow f\left(t\right)\le2\sqrt{2}-2\)

\(\Rightarrow\frac{1}{2}\le m\le2\sqrt{2}-2\)

Phương lan
Xem chi tiết
Nguyen
3 tháng 7 2019 lúc 20:12

Giải phương trình lượng giác,1 + tanx = 2căn2.sinx,[sin^2x(sinx - 1)] : (sinx + cosx) = 4cos^2(x/2),Toán học Lớp 11,bài tập Toán học Lớp 11,giải bài tập Toán học Lớp 11,Toán học,Lớp 11

Nguyen
3 tháng 7 2019 lúc 20:13

Giải phương trình lượng giác,1 + tanx = 2căn2.sinx,[sin^2x(sinx - 1)] : (sinx + cosx) = 4cos^2(x/2),Toán học Lớp 11,bài tập Toán học Lớp 11,giải bài tập Toán học Lớp 11,Toán học,Lớp 11

Nguyen
3 tháng 7 2019 lúc 20:13

Giải phương trình lượng giác,1 + tanx = 2căn2.sinx,[sin^2x(sinx - 1)] : (sinx + cosx) = 4cos^2(x/2),Toán học Lớp 11,bài tập Toán học Lớp 11,giải bài tập Toán học Lớp 11,Toán học,Lớp 11

Nguyễn Minh Quân
Xem chi tiết
dragon
2 tháng 11 2023 lúc 17:55

d la sai

 

 

kien nguyentrung
Xem chi tiết
Nguyễn Việt Lâm
7 tháng 10 2019 lúc 19:08

\(\Leftrightarrow1+2sinx.cosx-\left(sinx+cosx\right)=0\)

\(\Leftrightarrow sin^2x+cos^2x+2sinx.cosx-\left(sinx+cosx\right)=0\)

\(\Leftrightarrow\left(sinx+cosx\right)^2-\left(sinx+cosx\right)=0\)

\(\Leftrightarrow\left(sinx+cosx\right)\left(sinx+cosx-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx+cosx=0\\sinx+cosx=1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}sin\left(x+\frac{\pi}{4}\right)=0\\sin\left(x+\frac{\pi}{4}\right)=\frac{1}{\sqrt{2}}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x+\frac{\pi}{4}=k\pi\\x+\frac{\pi}{4}=\frac{\pi}{4}+k2\pi\\x+\frac{\pi}{4}=\frac{3\pi}{4}+k2\pi\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=-\frac{\pi}{4}+k\pi\\x=k2\pi\\x=\frac{\pi}{2}+k2\pi\end{matrix}\right.\)

Karry'ss _Kun
Xem chi tiết
Thắng Nguyễn
9 tháng 6 2016 lúc 11:41

đặt t=sinx+cosx và phải có đk của t

Lương Hằng Nga
Xem chi tiết
Nguyễn Minh Ngọc
Xem chi tiết
Nguyễn Lê Phước Thịnh
14 tháng 8 2023 lúc 11:18

=>(cosx+sinx)-2*sinx*cosx*(sinx+cosx)=0

=>\(\left(sinx+cosx\right)\left(2\cdot sinx\cdot cosx-1\right)=0\)

=>\(\sqrt{2}\cdot sin\left(x+\dfrac{pi}{4}\right)\cdot\left(sin2x-1\right)=0\)

=>\(\left[{}\begin{matrix}sin\left(x+\dfrac{pi}{4}\right)=0\\sin2x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x+\dfrac{pi}{4}=kpi\\sin2x=1\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}x=kpi-\dfrac{pi}{4}\\2x=\dfrac{pi}{2}+k2pi\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=kpi-\dfrac{pi}{4}\\x=\dfrac{pi}{4}+kpi\end{matrix}\right.\)