Cho \(n\in N\);n ko chia hết cho 3:CMR
\(n^2\div3\left(dư1\right)\)
Cho hai tập hợp:
\(A = \{ n \in N|n\)chia hết cho 3},
\(B = \{ n \in N|n\)chia hết cho 9}.
Chứng tỏ rằng \(B \subset A.\)
Lấy n bất kì thuộc tập hợp B.
Ta có: n chia hết cho 9 \( \Rightarrow n = 9k\;\;(k \in \mathbb{N})\)
\( \Rightarrow n = 3.(3k)\;\; \vdots \;3\;\;(k \in \mathbb{N})\)
\( \Rightarrow n \in A\)
Như vậy, mọi phần tử của tập hợp B đều là phần tử của tập hợp A hay \(B \subset A.\)
Cho hai tập hợp:
\(E = \{ n \in N|n\) chia hết cho 3 và 4}, và \(G = \{ n \in N|n\) chia hết cho 12}.
Chứng tỏ rằng E = G.
Ta có:
n chia hết cho 3 và 4 \( \Leftrightarrow \)n chia hết cho 12 (do (3,4) =1)
Do đó: nếu n là phần tử của tập hợp A thì n cũng là phần tử của tập hợp B và ngược lại.
Hay mọi phần tử của tập hợp A đều là phần tử của tập hợp B và ngược lại.
Vậy \(E \subset G\) và \(G \subset E\) hay E = G.
Tìm n \(\in\)N sao cho
\(\frac{n^2+3n}{n-1}\in N\)
Tìm n \(\in Z\)sao cho
\(\frac{n-8}{n^2+1}\in Z\)
a) Cho \(a^m=a^n\left(a\in Q;m,n\in N\right)\)Tìm các số m,n
b) Cho \(a^m=a^n\left(a\in Q;\right)a>0;m,n\in N\)So sánh m,n
Tìm \(n\in N\) sao cho C=\(\sqrt{n+2}+\sqrt{n+\sqrt{n+2}}\) \(\in Z\)
Đọc những điều ghi dưới đây và cho biết nó có đúng không ?
\(-4\in N,4\in N,0\in Z,5\in N,-1\in N,1\in N\)
- 4 thuộc N ( Sai ) ; 4 thuộc N ( Đúng ) ; 0 thuộc Z ( Đúng ) ; 5 thuộc N ( Đúng ) ; - 1 thuộc N ( Sai ) ; 1 thuộc N ( Đúng ) .
Chúc bạn học tốt !
Cho các tập hợp: A=\(\left\{n\in N\backslash n\in BC\left(4;6\right)\right\};B=\left\{n\in N\n\in B\left(12\right)\right\}\\ \)Chứng minh ràng:A=B
BCNN(4;6)=12
=>BC(4;6)=B(12)
=>A=B
Tìm \(n\in N\)* sao cho: \(n.2^n+3^n\) chia hết cho 25
Tìm \(n\in N\)* sao cho \(n.2^n+3^n\) chia hết cho 25
Đọc những điều ghi sau đây và cho biết điều đó có đúng không ?
\(-2\in\mathbb{N},6\in\mathbb{N},0\in\mathbb{N},0\in\mathbb{Z},-1\in\mathbb{N},-1\in\mathbb{Z}\)
\(-2\in N\rightarrow Sai:\) . -2 không thuộc Z
\(6\in N\rightarrow\) Đúng
\(0\in N\rightarrow\) Đúng
\(0\in Z\rightarrow\) Đúng
\(-1\in N\rightarrow Sai\) . -1 không thuộc N
\(-1\in Z\rightarrow\) Đúng
\(-2\in N\rightarrow Sai\) \(\left(-2\notin N\right)\)
\(6\in N\rightarrowĐúng\)
\(0\in N\rightarrowĐúng\)
\(0\in Z\rightarrowĐúng\)
\(-1\in N\rightarrow Sai\) \(\left(-1\notin N\right)\)
\(-1\in Z\rightarrowĐúng\)
−2∈N→Sai:−2∈N→Sai: . -2 không thuộc Z
6∈N→6∈N→ Đúng
0∈N→0∈N→ Đúng
0∈Z→0∈Z→ Đúng
−1∈N→Sai−1∈N→Sai . -1 không thuộc N
−1∈Z→−1∈Z→ Đúng