Tìm x: x- (\(\dfrac{2+2+2+2 }{3+15+35+63}\))= \(\dfrac{1}{9}\)
Tìm x biết: (\(\dfrac{2}{15}\)+\(\dfrac{2}{35}\)+\(\dfrac{2}{63}\)):x= \(\dfrac{1}{18}\)..
( \(\dfrac{2}{15}\) + \(\dfrac{2}{35}\) + \(\dfrac{2}{63}\)) : \(x\) = \(\dfrac{1}{18}\)
( \(\dfrac{2\times7}{15\times7}\) + \(\dfrac{2\times3}{35\times3}\) + \(\dfrac{2}{63}\)) : \(x\) = \(\dfrac{1}{18}\)
(\(\dfrac{14}{105}\) + \(\dfrac{6}{105}\) + \(\dfrac{2}{63}\)) : \(x\) = \(\dfrac{1}{18}\)
(\(\dfrac{20}{105}\) + \(\dfrac{2}{63}\)) : \(x\) = \(\dfrac{1}{18}\)
( \(\dfrac{4}{21}\) + \(\dfrac{2}{63}\)) : \(x\) = \(\dfrac{1}{18}\)
(\(\dfrac{12}{63}\) + \(\dfrac{2}{63}\)) : \(x\) = \(\dfrac{1}{18}\)
\(\dfrac{2}{9}\) : \(x\) = \(\dfrac{1}{18}\)
\(x\) = \(\dfrac{2}{9}\) : \(\dfrac{1}{18}\)
\(x\) = 4
( 215152 + 235352 + 263632) : �x = 118181
( 2×715×715×72×7 + 2×335×335×32×3 + 263632) : �x = 118181
(1410510514 + 61051056 + 263632) : �x = 118181
(2010510520 + 263632) : �x = 118181
( 421214 + 263632) : �x = 118181
(12636312 + 263632) : �x = 118181
2992 : �x = 118181
�x = 2992 : 118181
�x = 4
Tìm x biết: (\(\dfrac{2}{15}\)+\(\dfrac{2}{35}\)+\(\dfrac{2}{63}\)):x =
\(\dfrac{2}{3}x+\dfrac{2}{15}x+\dfrac{2}{35}x+\dfrac{2}{63}x+\dfrac{99}{x}=-\dfrac{3}{7}\)
=>x(1-1/3+1/3-1/5+1/5-1/7+1/7-1/9)+99/x=-3/7
=>8/9x+99/x=-3/7
\(\Leftrightarrow\dfrac{8x}{9}+\dfrac{99}{x}=\dfrac{-3}{7}\)
\(\Leftrightarrow\dfrac{8x^2+99\cdot9}{9x}=\dfrac{-3}{7}\)
\(\Leftrightarrow-56x^2-6237=27x\)
hay \(x\in\varnothing\)
giai phuong trinh\(\dfrac{1}{x^2+4x+3}+\dfrac{1}{x^2+8x+15}+\dfrac{1}{x^2+12x+35}+\dfrac{1}{x^2+16x+63}=\dfrac{1}{5}\)
b) \(\left(x-3\right)^2+3x-22=\sqrt{x^2-3x+7}\)
\(\Leftrightarrow x^2-6x+9+3x-22=\sqrt{x^2-3x+7}\)
\(\Leftrightarrow\left(x^2-3x+7\right)-\sqrt{x^2-3x+7}-20=0\)
Đặt \(\sqrt{x^2-3x+7}=t\left(t\ge0\right)\left(1\right)\)
\(\Rightarrow t^2-t-20=0\)
\(\Rightarrow x_1=5\left(TM\right);x_2=-4\left(KTM\right)\)
Thay t=5 vào (1), ta có :
\(\sqrt{x^2-3x+7}=5\)
\(\Leftrightarrow x^2-3x+7=25\)
\(\Leftrightarrow x^2-3x-18=0\)
\(\Rightarrow x_1=6;x_2=-3\)
vậy...
\(\Leftrightarrow\dfrac{1}{\left(x+1\right)\left(x+3\right)}+\dfrac{1}{\left(x+3\right)\left(x+5\right)}+\dfrac{1}{\left(x+5\right)\left(x+7\right)}+\dfrac{1}{\left(x+7\right)\left(x+9\right)}=\dfrac{1}{5}\)
\(\Leftrightarrow\dfrac{1}{x+1}-\dfrac{1}{x+3}+\dfrac{1}{x+3}-\dfrac{1}{x+5}+\dfrac{1}{x+5}-\dfrac{1}{x+7}+\dfrac{1}{x+7}-\dfrac{1}{x+9}=\dfrac{2}{5}\)
=>\(\dfrac{x+9-x-1}{\left(x+9\right)\left(x+1\right)}=\dfrac{2}{5}\)
\(\Leftrightarrow2\left(x^2+10x+9\right)=5\cdot8=40\)
=>x^2+10x+9=20
=>x^2+10x-11=0
=>(x+10)(x-1)=0
=>x=1 hoặc x=-10
Giải phương trình: \(\dfrac{1}{x^2+4x+3}+\dfrac{1}{x^2+8x+15}+\dfrac{1}{x^2+12x+35}+\dfrac{1}{x^2+16x+63}=\dfrac{1}{5}\)
\(\Leftrightarrow\dfrac{2}{\left(x+1\right)\left(x+3\right)}+\dfrac{2}{\left(x+3\right)\left(x+5\right)}+\dfrac{2}{\left(x+5\right)\left(x+7\right)}+\dfrac{2}{\left(x+7\right)\left(x+9\right)}=\dfrac{2}{5}\)
\(\Leftrightarrow\dfrac{1}{x+1}-\dfrac{1}{x+3}+\dfrac{1}{x+3}-\dfrac{1}{x+5}+\dfrac{1}{x+5}-\dfrac{1}{x+7}+\dfrac{1}{x+7}-\dfrac{1}{x+9}=\dfrac{2}{5}\)
\(\Leftrightarrow\dfrac{1}{x+1}-\dfrac{1}{x+9}=\dfrac{2}{5}\)
\(\Leftrightarrow\dfrac{x+9-x-1}{\left(x+1\right)\left(x+9\right)}=\dfrac{2}{5}\)
=>2(x+1)(x+9)=5*8=40
=>x^2+9x+9=20
=>x^2+9x-11=0
hay \(x=\dfrac{-9\pm5\sqrt{5}}{2}\)
=>x^2+9x
\(A.\dfrac{-15}{28}x\dfrac{7}{25}\\ B.\dfrac{-5}{14}x\dfrac{7}{-3}\\ C.\dfrac{-1}{5}-\dfrac{7}{15}x\dfrac{9}{35}\\ D.\dfrac{-3}{4}-(\dfrac{-1}{2})^2\\ E.\dfrac{-4}{5}-\dfrac{-4}{5}x\dfrac{15}{16}\\F.(\dfrac{3}{4}+\dfrac{-7}{2})x(\dfrac{2}{11}+\dfrac{12}{22})\)
a: \(A=\dfrac{-7}{28}\cdot\dfrac{15}{25}=\dfrac{-1}{4}\cdot\dfrac{3}{5}=\dfrac{-3}{20}\)
b: \(B=\dfrac{-5\cdot7}{14\cdot\left(-3\right)}=\dfrac{35}{42}=\dfrac{5}{6}\)
c: \(C=\dfrac{-1}{5}-\dfrac{1}{5}\cdot\dfrac{3}{5}=\dfrac{-1}{5}-\dfrac{3}{25}=\dfrac{-8}{25}\)
d: \(D=\dfrac{-3}{4}-\dfrac{1}{4}=-1\)
e: \(E=\dfrac{-4}{5}\left(1-\dfrac{15}{16}\right)=\dfrac{-4}{5}\cdot\dfrac{1}{16}=\dfrac{-1}{20}\)
f: \(F=\dfrac{6-7}{4}\cdot\dfrac{4+12}{22}=\dfrac{-1}{4}\cdot\dfrac{8}{11}=\dfrac{-2}{11}\)
Tìm x, biết:
i) 4*3x+3x+1=63
k)9*\(\left(\dfrac{2}{3}\right)^{x+2}\)-\(\left(\dfrac{2}{3}\right)^x\)=\(\dfrac{4}{3}\)
\(4.3^x+3^{x+1}=63\)
\(\Rightarrow4.3^x+3.3^x=63\)
\(\Rightarrow7.3^x=63\Rightarrow3^x=9=3^2\Rightarrow x=2\)
\(9.\left(\dfrac{2}{3}\right)^{x+2}-\left(\dfrac{2}{3}\right)^x=\dfrac{4}{3}\)
\(\Rightarrow9.\left(\dfrac{2}{3}\right)^2\left(\dfrac{2}{3}\right)^x-\left(\dfrac{2}{3}\right)^x=\dfrac{4}{3}\)
\(\Rightarrow9.\dfrac{4}{9}^{ }.\left(\dfrac{2}{3}\right)^x-\left(\dfrac{2}{3}\right)^x=\dfrac{4}{3}\)
\(\Rightarrow\left(\dfrac{2}{3}\right)^x.\left(4-1\right)=\dfrac{4}{3}\)
\(\Rightarrow\left(\dfrac{2}{3}\right)^x.\dfrac{1}{3}=\dfrac{4}{3}\Rightarrow\left(\dfrac{2}{3}\right)^x=4\)
mà \(0< \left(\dfrac{2}{3}\right)^x< 1;4>0;x>0\)
\(\Rightarrow x\in\varnothing\)
Câu 10:
a) \(-3\dfrac{1}{4}.x-75\%+\dfrac{3x}{2}=-1,2:-\dfrac{9}{10}-1\dfrac{1}{4}\)
b) \(\dfrac{5}{3}+\dfrac{5}{15}+\dfrac{5}{35}+...+\dfrac{5}{x\left(x+2\right)}=2\dfrac{8}{17}\)(x thuộc N sao)
a) Ta có: \(-3\dfrac{1}{4}\cdot x-75\%+\dfrac{3x}{2}=-1.2:\dfrac{-9}{10}-1\dfrac{1}{4}\)
\(\Leftrightarrow\dfrac{-13x}{4}-\dfrac{3}{4}+\dfrac{3x}{2}=\dfrac{-6}{5}\cdot\dfrac{10}{-9}-\dfrac{5}{4}\)
\(\Leftrightarrow\dfrac{-13x-3+6x}{4}=\dfrac{4}{3}-\dfrac{5}{4}\)
\(\Leftrightarrow\dfrac{-7x-3}{4}=\dfrac{1}{12}\)
\(\Leftrightarrow-7x-3=\dfrac{1}{3}\)
\(\Leftrightarrow-7x=\dfrac{10}{3}\)
hay \(x=-\dfrac{10}{21}\)
b) Ta có: \(\dfrac{5}{3}+\dfrac{5}{15}+\dfrac{5}{35}+...+\dfrac{5}{x\left(x+2\right)}=2\dfrac{8}{17}\)
\(\Leftrightarrow\dfrac{5}{2}\left(\dfrac{2}{3}+\dfrac{2}{15}+\dfrac{2}{35}+...+\dfrac{2}{x\left(x+2\right)}\right)=2\dfrac{8}{17}\)
\(\Leftrightarrow\dfrac{5}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{x}-\dfrac{1}{x+2}\right)=2+\dfrac{8}{17}\)
\(\Leftrightarrow\left(1-\dfrac{1}{x+2}\right)=\dfrac{42}{17}:\dfrac{5}{2}\)
\(\Leftrightarrow\dfrac{x+1}{x+2}=\dfrac{42}{17}\cdot\dfrac{2}{5}=\dfrac{84}{85}\)
\(\Leftrightarrow85x+85=84x+168\)
\(\Leftrightarrow x=83\)
Giải các phương trình sau theo phương pháp đặt ẩn phụ:
a.{\(\dfrac{12}{x-3}-\dfrac{5}{y+2}=63\)
\(\dfrac{8}{x-3}+\dfrac{15}{y+2}=-13\)
b.{\(4\sqrt{x+3}-9\sqrt{y+1}=2\)
\(5\sqrt{x+3}+3\sqrt{y+1}=31\)
a: \(\left\{{}\begin{matrix}\dfrac{12}{x-3}-\dfrac{5}{y+2}=63\\\dfrac{8}{x-3}+\dfrac{15}{y+2}=-13\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{24}{x-3}-\dfrac{10}{y+2}=126\\\dfrac{24}{x-3}+\dfrac{45}{y+2}=-39\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{-55}{y+2}=165\\\dfrac{12}{x-3}-\dfrac{5}{y+2}=63\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y+2=\dfrac{-1}{3}\\\dfrac{12}{x-3}=48\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-\dfrac{7}{3}\\x=\dfrac{13}{4}\end{matrix}\right.\)