tìm x biết (x+1)^3-(x+1)(x-1)=0
tìm x biết :
4x(x+1) = 8(x+1)
x(2x+1) +\(\dfrac{1}{3}-\dfrac{2}{3}x=0\)
x(x-4) +(x-4)2 =0
3) \(x\left(x-4\right)+\left(x-4\right)^2=0\Leftrightarrow\left(x-4\right)\left(x+x-4\right)=0\Leftrightarrow2\left(x-4\right)\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-4=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=2\end{matrix}\right.\)
4x.(x+1)-8(x+1)=0
(4x-8)(x+1)=0
suy ra x=2 hoặc x=-1
1) \(4x\left(x+1\right)=8\left(x+1\right)\Leftrightarrow4x^2+4x=8x+8\Leftrightarrow4x^2-4x-8=0\Leftrightarrow x^2-x-2=0\Leftrightarrow\left(x-2\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\)
x2( x + 1 ) + 2x( x + 1 ) = 0 <=> x( x + 1 )( x + 2 ) = 0 <=> x = 0 hoặc x = -1 hoặc x = -2
x( 3x - 1 ) - 5( 1 - 3x ) = 0 <=> x( 3x - 1 ) + 5( 3x - 1 ) = 0 <=> ( 3x - 1 )( x + 5 ) = 0 <=> x = 1/3 hoặc x = -5
Trả lời:
1, \(x^2\left(x+1\right)+2x\left(x+1\right)=0\)
\(\Leftrightarrow x\left(x+1\right)\left(x+2\right)=0\)
\(\Leftrightarrow x=0;x=-1;x=-2\)
Vậy x = 0; x = - 1; x = - 2 là nghiệm của pt.
2, \(x\left(3x-1\right)-5\left(1-3x\right)=0\)
\(\Leftrightarrow x\left(3x-1\right)+5\left(3x-1\right)=0\)
\(\Leftrightarrow\left(3x-1\right)\left(x+5\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}3x-1=0\\x+5=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{3}\\x=-5\end{cases}}}\)
Vậy x = 1/3; x = - 5 là nghiệm của pt.
1.Tìm x biết:
(x-3)(x+2)(x+1)/(x-4)(x+3)>0
Ta có : \(\dfrac{\left(x-3\right)\left(x+2\right)\left(x+1\right)}{\left(x+3\right)\left(x-4\right)}>0\)
- Đặt \(f\left(x\right)=\dfrac{\left(x-3\right)\left(x+2\right)\left(x+1\right)}{\left(x+3\right)\left(x-4\right)}\)
- Lập bảng xét dấu :
- Từ bảng xét dấu : - Để f(x) > 0
\(\Leftrightarrow\left[{}\begin{matrix}-3< x< -2\\-1< x< 3\\x>4\end{matrix}\right.\)
Vậy ...
Tìm x biết : |3 - |x-1| | = 2
Tìm x, y biết 4 |x+3| + |2y - 1| = 0
tìm x,y biết : |x+1|+|x+2|+|x+3|=x. b: |2x+1+|x-y+1|=0. c: |x-3|+3=x
Lời giải:
a. $x=|x+1|+|x+2|+|x+3|\geq 0$
$\Rightarrow x+1>0; x+2>0; x+3>0$
$\Rightarrow |x+1|=x+1; |x+2|=x+2; |x+3|=x+3$. Do đó:
$(x+1)+(x+2)+(x+3)=x$
$3x+6=x$
$2x+6=0$
$x=-3< 0$ (vô lý)
Vậy pt vô nghiệm.
b.
$|2x+1|\geq 0$
$|x-y+1|\geq 0$
Do đó để tổng của chúng bằng $0$ thì:
$2x+1=x-y+1=0$
$\Leftrightarrow x=\frac{-1}{2}; y=\frac{1}{2}$
c.
$|x-3|=x-3$
$\Leftrightarrow x\geq 3$
c: Ta có: \(\left|x-3\right|+3=x\)
\(\Leftrightarrow\left|x-3\right|=x-3\)
\(\Leftrightarrow x-3\ge0\)
hay \(x\ge3\)
a) \(\sqrt{x}\left(\sqrt{x}-1\right)=0\Leftrightarrow\orbr{\begin{cases}\sqrt{x}=0\\\sqrt{x}-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}\)
b) \(\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)=0\Leftrightarrow\orbr{\begin{cases}\sqrt{x}-2=0\\\sqrt{x}+3=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=4\\\sqrt{x}=-3\left(vôlí\right)\end{cases}}\)
c) \(\left(\sqrt{x}+1\right)\left(\sqrt{x}+3\right)=0\Leftrightarrow\orbr{\begin{cases}\sqrt{x}+1=0\\\sqrt{x}+3=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}\sqrt{x}=-1\left(vôlí\right)\\\sqrt{x}=-3\left(vôlí\right)\end{cases}}\)
Tìm x biết:
1> (x+1)^2-(x+2)^2=3
2> (x-1)(x+1)-(x-3)^2=0
3> (x+1)^3-x^2(x+2)-(x-1)^2=0
4> (x+1)(x^2-x+1)-x^2(x+2)+2(x+3)^2=0
Tìm x ϵ z biết
1, 0<x<3
2,0<x≤3
3, -1<x≤4
4, -2≤x≤2
5, -5<x≤0
6, -3<x≤0
7, 0<x-1≤1
8, -1≤x-1<0
9,1≤x-1≤2
10, 1≤x-1<2
11, -3<x<3
12, -3≤x≤3
13, -3<x-1<3
14, -3≤x-1≤3
15, -2<x+1<2
16, -4<x+3<4
17, 0≤x-5≤2
18, x là số không âm và nhỏ hơn 5
19,(x-3) là số không âm và nhỏ hơn 4
20, (x+2) là số dương và không lớn hơn 5
cÁC BẠN ƠI GIÚP MÌNH VS Ạ,MÌNH ĐANG CẦN GẤP!!!!!!
1) Do x ∈ Z và 0 < x < 3
⇒ x ∈ {1; 2}
2) Do x ∈ Z và 0 < x ≤ 3
⇒ x ∈ {1; 2; 3}
3) Do x ∈ Z và -1 < x ≤ 4
⇒ x ∈ {0; 1; 2; 3; 4}
tìm x biết
(x-1)2-1+x2-(1-x)(x+3)=0
(x-1)2-1+x2-(1-x)(x+3)=0
⇒x2-2x+1-1+x2-x(1-x)+3(1-x)=0
⇒x2-2x+1-1+x2-x+x2+3-3x=0
⇒3x2-6x+3=0
⇒3(x2-2x+1)=0
⇒x2-2x+1=0
⇒(x-1)2=0
⇒x-1=0
⇒x=1
Lời giải:
$(x-1)^2-1+x^2-(1-x)(x+3)=0$
$\Leftrightarrow (x^2-2x+1)-1+x^2-(3-x^2-2x)=0$
$\Leftrightarrow x^2-2x+1-1+x^2-3+x^2+2x=0$
$\Leftrightarrow 3x^2-3=0$
$\Leftrightarrow x^2-1=0$
$\Leftrightarrow (x-1)(x+1)=0$
$\Leftrightarrow x=1$ hoặc $x=-1$
\(\left(x-1\right)^2-1+x^2+\left(1-x\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left(x-1\right)^2+\left(x^2-1\right)+\left(x-1\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-1+x+1+x+3\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(3x+3\right)=0\)
\(\Leftrightarrow3\left(x^2-1\right)=0\) \(\Leftrightarrow x^2-1=0\) \(\Leftrightarrow x^2=1\) \(\Leftrightarrow x=\pm1\)