giải pt sau:
\(\left(\dfrac{x+2}{x^2-2x+1}-\dfrac{x-2}{x^2-1}\right)\dfrac{x+1}{x}=2\)
Giải pt sau
\(\left(\dfrac{x-1}{x+2}\right)^2-\left(\dfrac{2x+4}{x-3}\right)^2+3\left(\dfrac{x-1}{x-3}\right)=0\)
ĐKXĐ: ...
\(\left(\dfrac{x-1}{x+2}\right)^2-4\left(\dfrac{x+2}{x-3}\right)^2+3\left(\dfrac{x-1}{x-3}\right)=0\)
Đặt \(\left\{{}\begin{matrix}\dfrac{x-1}{x+2}=a\\\dfrac{x+2}{x-3}=b\end{matrix}\right.\)
\(\Rightarrow a^2-4b^2+3ab=0\Leftrightarrow\left(a-b\right)\left(a+4b\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a-b=0\\a+4b=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\dfrac{x-1}{x+2}-\dfrac{x+2}{x-3}=0\\\dfrac{x-1}{x+2}+\dfrac{4x+8}{x-3}=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left(x-1\right)\left(x-3\right)-\left(x+2\right)^2=0\\\left(x-\right)\left(x-3\right)+4\left(x+2\right)^2=0\end{matrix}\right.\)
\(\Leftrightarrow...\)
giải pt sau \(\left(\dfrac{x+1}{x-2}\right)^2-3\left(\dfrac{2x-4}{x-4}\right)^2+\dfrac{x+1}{x-4}=0\)
ĐKXĐ: \(x\ne\left\{2;4\right\}\)
Đặt \(\left\{{}\begin{matrix}\dfrac{x+1}{x-2}=a\\\dfrac{x-2}{x-4}=b\end{matrix}\right.\) \(\Rightarrow\dfrac{x+1}{x-4}=ab\)
Phương trình trở thành:
\(a^2-12b^2+ab=0\)
\(\Leftrightarrow a^2+4ab-3ab-12b^2=0\)
\(\Leftrightarrow a\left(a+4b\right)-3b\left(a+4b\right)=0\)
\(\Leftrightarrow\left(a-3b\right)\left(a+4b\right)=0\Leftrightarrow\left[{}\begin{matrix}a-3b=0\\a+4b=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{x+1}{x-2}-\dfrac{3\left(x-2\right)}{x-4}=0\\\dfrac{x+1}{x-2}+\dfrac{4\left(x-2\right)}{x-4}=0\end{matrix}\right.\)
Bạn tự quy đồng và hoàn thành phần còn lại nhé
giải các PT sau :
a) \(\left|2x+3\right|-\left|x\right|+\left|x-1\right|=2x+4\)
b) \(\sqrt{x}-\dfrac{4}{\sqrt{x+2}}+\sqrt{x+2}=0\)
c) \(\sqrt{x+\sqrt{2x-1}}+\sqrt{x-\sqrt{2x-1}}=\sqrt{2}\)
d) \(x+\sqrt{x+\dfrac{1}{2}+\sqrt{x+\dfrac{1}{4}}}=4\)
e) \(\sqrt{4x+3}+\sqrt{2x+1}=6x+\sqrt{8x^2+10x+3}-16\)
f)\(\sqrt[3]{x-2}+\sqrt{x+1}=3\)
GIÚP MÌNH VỚI MÌNH ĐANG CẦN GẤP
\(x^2+\dfrac{1}{x^2}=x+\dfrac{1}{x}\)
\(x\left(x+1\right)\left(x+2\right)\left(x+3\right)=24\)
e,\(\left(x^2+x+1\right)^2-2x^2-2x=5\)
Giải pt
\(a.x^2+\dfrac{1}{x^2}=x+\dfrac{1}{x}\) ( ĐKXĐ : \(x\ne0\) )
\(\Leftrightarrow x^2+\dfrac{1}{x^2}-x-\dfrac{1}{x}=0\Leftrightarrow\left(x^2-\dfrac{1}{x}\right)+\left(\dfrac{1}{x^2}-x\right)=0\)
\(\Leftrightarrow-x\left(\dfrac{1}{x^2}-x\right)+\left(\dfrac{1}{x^2}-x\right)=0\Leftrightarrow\left(\dfrac{1}{x^2}-x\right)\left(1-x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}1-x=0\\\dfrac{1}{x^2}-x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\1-x^3=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\\left(1-x\right)\left(1+x+x^2\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=1\end{matrix}\right.\Leftrightarrow x=1\) ( x2 + x + 1 loại nhé nếu phân tích ra thì ta được \(x^2+2.x.\dfrac{1}{2}+\dfrac{1}{4}-\dfrac{1}{4}+1=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\forall x\in R\) )
Vậy \(S=\left\{1\right\}\)
b, \(x\left(x+1\right)\left(x+2\right)\left(x+3\right)=24\)
\(\Leftrightarrow x\left(x+3\right).\left(x+1\right)\left(x+2\right)-24=0\)
\(\Leftrightarrow\left(x^2+3x\right)\left(x^2+3x+2\right)-24=0\)
\(\Leftrightarrow\left(x^2+3x+1-1\right)\left(x^2+3x+1+1\right)-24=0\)
\(\Leftrightarrow\left(x^2+3x+1\right)-1-24=0\Leftrightarrow\left(x^2+3x+1\right)-25=0\)
\(\Leftrightarrow\left(x^2+3x+1-5\right)\left(x^2+3x+1+5\right)=0\Leftrightarrow\left(x^2+3x-4\right)\left(x^2+3x+6\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2+3x-4=0\\x^2+3x+6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left(x-1\right)\left(x+4\right)=0\\\left(x+\dfrac{3}{2}\right)^2+\dfrac{15}{4}\ge\dfrac{15}{4}\forall x\in R\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-4\end{matrix}\right.\)
Vậy \(S=\left\{-4;1\right\}\)
e, \(\left(x^2+x+1\right)-2x^2-2x=5\Leftrightarrow\left(x^2+x+1\right)-2x^2-2x-2-3=0\)
\(\Leftrightarrow\left(x^2+x+1\right)-2\left(x^2+x+1\right)-3=0\)
\(\Leftrightarrow\left(x^2+x+1\right)\left(x^2+x-1\right)-3=0< =>\left(x^2+x\right)^2-4=0\)
\(\Leftrightarrow\left(x^2+x-2\right)\left(x^2+x+2\right)=0\)
\(\Leftrightarrow x^2+x-2=0\Leftrightarrow\left(x-1\right)\left(x+2\right)=0\) ( x^2 + x + 2 loại nhé y như mấy câu trên luôn khác 0 ! )
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)
Vậy \(S=\left\{-2;1\right\}\)
Giải pt sau: \(10\left(x+\dfrac{1}{x}\right)^2+5\left(x^2+\dfrac{1}{x^2}\right)^2-5\left(x^2+\dfrac{1}{x^2}\right)\left(x+\dfrac{1}{x}\right)^2=\left(x-5\right)^2-5\)
\(\Leftrightarrow10\left(x^2+\dfrac{1}{x^2}+2\right)+5\left(x^2+\dfrac{1}{x^2}\right)^2-5\left(x^2+\dfrac{1}{x^2}\right)\left(x^2+\dfrac{1}{x^2}+2\right)=\left(x-5\right)^2-5\)
\(\Leftrightarrow10\left(x^2+\dfrac{1}{x^2}\right)+20+5\left(x^2+\dfrac{1}{x^2}\right)^2-5\left(x^2+\dfrac{1}{x^2}\right)^2-10\left(x^2+\dfrac{1}{x^2}\right)=\left(x-5\right)^2-5\)
\(\Leftrightarrow\left(x-5\right)^2=25\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=10\end{matrix}\right.\)
Bt: Giải các pt sau:
a, \(\dfrac{x+3}{x+1}\) + \(\dfrac{x-2}{x}\)=\(\dfrac{2\left(x^2+x-1\right)}{x\left(x+1\right)}\)
b, \(\dfrac{2}{x-2}-\dfrac{x}{x+3}=\dfrac{5x}{\left(x-2\right)\left(x+3\right)}-1\)
c, \(\dfrac{1}{x^2+x+1}-\dfrac{1}{x^2-x+1}=\dfrac{1-2x}{x^4+x^2+1}\)
d, \(\dfrac{3x-1}{x-1}-\dfrac{2x+5}{x+3}+\dfrac{4}{x^2+2x-3}=1\)
e, \(\left(x+1\right)\left(x+2\right)\left(x+4\right)\left(x+5\right)=40\)
a) Đk : \(x\ne0;\ne1\)
\(\dfrac{x+3}{x+1}+\dfrac{x-2}{x}=\dfrac{2\left(x^2+x-1\right)}{x\left(x+1\right)}\)
\(\Rightarrow\dfrac{x^2+3x}{x\left(x+1\right)}+\dfrac{x^2-x-2}{x\left(x+1\right)}-\dfrac{2x^2+2x-2}{x\left(x+1\right)}=0\)
\(\Rightarrow\dfrac{x^2+3x+x^2-x-2-2x^2-2x+2}{x\left(x-1\right)}=0\)
\(\Rightarrow\dfrac{0}{x-1}=0\)
=> Phương trình có vô số nghiệm x
b) Đk : \(x\ne2;x\ne3\)
\(\dfrac{2}{x-2}-\dfrac{x}{x+3}=\dfrac{5x}{\left(x-2\right)\left(x+3\right)}-1\)
\(\Rightarrow\dfrac{2x+6}{\left(x-2\right)\left(x+3\right)}-\dfrac{x^2-2x}{\left(x-2\right)\left(x+3\right)}-\dfrac{5x}{\left(x-2\right)\left(x+3\right)}+\dfrac{x^2+x-6}{\left(x-2\right)\left(x+3\right)}\)
=0
\(\Rightarrow\dfrac{2x+6-x^2+2x-5x+x^2+x+6}{\left(x-2\right)\left(x+3\right)}=0\)
\(\Rightarrow\dfrac{12}{\left(x-2\right)\left(x+3\right)}=0\)
=> Phương trình vô nghiệm
c)
\(\Leftrightarrow\dfrac{x^2-x+1}{x^4+x^2+1}-\dfrac{x^2+x+1}{x^4+x^2+1}-\dfrac{1-2x}{x^4+x^2+1}=0\)
\(\Rightarrow\dfrac{x^2-x+1-x^2-x-1-1+2x}{x^4+x^2+1}=0\)
\(\Rightarrow\dfrac{-1}{x^4+x^2+1}=0\)
=> PTVN
d) Thôi tự làm đi, câu này dễ :Vvv
e)
\(\left(x+1\right)\left(x+2\right)\left(x+4\right)\left(x+5\right)\)=40
\(\Rightarrow\left[\left(x+1\right)\left(x+5\right)\right]\cdot\left[\left(x+2\right)\left(x+4\right)\right]=40\)
\(\Rightarrow\left(x^2+6x+5\right)\left(x^2+6x+8\right)=40\)
Đặt
\(x^2+6x+7=t\)
Phương trình tương đương
\(\left(t-1\right)\left(t+1\right)=40\)
\(t^2=41\)
\(\)\(t=\pm\sqrt{41}\)
Thay vào tìm x.
Giải các pt sau:
a) \(\dfrac{x}{x+2}=\dfrac{x^2+4}{x^2-4}\)
b) \(\dfrac{x}{2x-6}+\dfrac{x}{2x+2}+\dfrac{2x}{\left(x+1\right)\left(3-x\right)}=0\)
c) \(\dfrac{2-x}{2017}-1=\dfrac{1-x}{2018}-\dfrac{x}{2019}\)
a) ĐKXĐ: \(x\ne\pm2\)
Ta có: \(\dfrac{x}{x+2}=\dfrac{x^2+4}{x^2-4}\)
\(\Leftrightarrow\dfrac{x}{x+2}=\dfrac{x^2+4}{\left(x+2\right)\left(x-2\right)}\)
\(\Leftrightarrow\dfrac{x\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}=\dfrac{x^2+4}{\left(x+2\right)\left(x-2\right)}\)
\(\Rightarrow x\left(x-2\right)=x^2+4\)
\(\Leftrightarrow x^2-2x=x^2+4\)
\(\Leftrightarrow-2x=4\Leftrightarrow x=-2\)(KTMĐK)
Vậy phương trình vô nghiệm
b) ĐKXĐ: \(x\ne3;x\ne-1\)
Ta có: \(\dfrac{x}{2x-6}+\dfrac{x}{2x+2}+\dfrac{2x}{\left(x+1\right)\left(3-x\right)}=0\)
\(\Leftrightarrow\dfrac{x}{2\left(x-3\right)}+\dfrac{x}{2\left(x+1\right)}-\dfrac{2x}{\left(x+1\right)\left(x-3\right)}=0\)
\(\Leftrightarrow\dfrac{x\left(x+1\right)}{2\left(x-3\right)\left(x+1\right)}+\dfrac{x\left(x-3\right)}{2\left(x+1\right)\left(x-3\right)}-\dfrac{2.2x}{2\left(x+1\right)\left(x-3\right)}=0\)
\(\Rightarrow x\left(x+1\right)+x\left(x-3\right)-2.2x=0\)
\(\Leftrightarrow x^2+x+x^2-3x-4x=0\)
\(\Leftrightarrow2x^2-6x=0\)
\(\Leftrightarrow2x\left(x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\left(TMĐK\right)\\x=3\left(KTMĐK\right)\end{matrix}\right.\)
Vậy phương trình có nghiệm là \(x=0\)
c) Ta có: \(\dfrac{2-x}{2017}-1=\dfrac{1-x}{2018}-\dfrac{x}{2019}\)
\(\Leftrightarrow\dfrac{2-x}{2017}+1=\dfrac{1-x}{2018}+1-\dfrac{x}{2019}+1\)
\(\Leftrightarrow\dfrac{2-x}{2017}+1=\left(\dfrac{1-x}{2018}+1\right)-\left(\dfrac{x}{2019}-1\right)\)
\(\Leftrightarrow\dfrac{2-x+2017}{2017}=\dfrac{1-x+2018}{2018}-\dfrac{x-2019}{2019}\)
\(\Leftrightarrow\dfrac{2019-x}{2017}=\dfrac{2019-x}{2018}+\dfrac{2019-x}{2019}\)
\(\Leftrightarrow\dfrac{2019-x}{2017}-\dfrac{2019-x}{2018}-\dfrac{2019-x}{2019}=0\)
\(\Leftrightarrow\left(2019-x\right)\left(\dfrac{1}{2017}-\dfrac{1}{2018}-\dfrac{1}{2019}\right)=0\)
\(\Leftrightarrow2019-x=0\)(vì \(\dfrac{1}{2017}-\dfrac{1}{2018}-\dfrac{1}{2019}\ne0\))
\(\Leftrightarrow x=2019\)
Vậy nghiệm của phương trình là \(x=2019\)
giải pt
\(\dfrac{1}{3-x}-\dfrac{1}{x+1}=\dfrac{x}{x-3}-\dfrac{\left(x-1\right)^2}{x^2-2x-3}\)
\(\dfrac{1}{x-2}-\dfrac{6}{x+3}=\dfrac{5}{6-x^2-x}\)
`1/(3-x)-1/(x+1)=x/(x-3)-(x-1)^2/(x^2-2x-3)(x ne -1,3)`
`<=>(-x-1)/(x^2-2x-3)-(x-3)/(x^2-2x-3)=(x^2+x)/(x^2-2x-3)-(x-1)^2/(x^2-2x-3)`
`<=>-x-1-x+3=x^2+x-x^2+2x-1`
`<=>-2x+2=3x-1`
`<=>5x=3`
`<=>x=3/5`
Vậy `S={3/5}`
`1/(x-2)-6/(x+3)=6/(6-x^2-x)(x ne 2,-3)`
`<=>(x+3)/(x^2+x-6)-(6x-12)/(x^2+x-6)+6/(x^2+x-6)=0`
`<=>x+3-6x+12+6=0`
`<=>-5x+21=0`
`<=>x=21/5`
Vậy `S={21/5}`
a) ĐKXĐ: \(x\notin\left\{3;-1\right\}\)
Ta có: \(\dfrac{1}{3-x}-\dfrac{1}{x+1}=\dfrac{x}{x-3}-\dfrac{\left(x-1\right)^2}{x^2-2x-3}\)
\(\Leftrightarrow\dfrac{-1\left(x+1\right)}{\left(x-3\right)\left(x+1\right)}-\dfrac{x-3}{\left(x+1\right)\left(x-3\right)}=\dfrac{x\left(x+1\right)}{\left(x-3\right)\left(x+1\right)}-\dfrac{x^2-2x+1}{\left(x-3\right)\left(x+1\right)}\)
Suy ra: \(-x-1-x+3=x^2+x-x^2+2x-1\)
\(\Leftrightarrow3x-1=-2x+2\)
\(\Leftrightarrow3x+2x=2+1\)
\(\Leftrightarrow5x=3\)
hay \(x=\dfrac{3}{5}\)(nhận)
Vậy: \(S=\left\{\dfrac{3}{5}\right\}\)
giải Pt sau :
\(\dfrac{1}{x^2-2x+2}+\dfrac{1}{x^2-2x+3}=\dfrac{9}{2\left(x^2-2x+4\right)}\)
Đặt t=x2-2x+3(t\(\ge\)2)
PTTT: \(\dfrac{1}{t-1}+\dfrac{1}{t}=\dfrac{9}{2\left(t+1\right)}\)
<=>2t2+2t+2t2-2=9t2-9
<=>5t2-2t-7=0
<=>(t+1)(5t-7)=0
Do t\(\ge\)2
=>t+1>0 5t-7>0
Vậy pt vô nghiệm
\(\dfrac{1}{x^2-2x+2}+\dfrac{1}{x^2-2x+3}=\dfrac{9}{2\left(x^2-2x+4\right)}\)
Đặt \(t=x^2-2x+2=\left(x-1\right)^2+1\ge1\)
Thì ta có:
\(PT\Leftrightarrow\dfrac{1}{t}+\dfrac{1}{t+1}=\dfrac{9}{2\left(t+2\right)}\)
\(\Leftrightarrow5t^2-t-4=0\)
\(\Leftrightarrow\left(5t^2-5t\right)+\left(4t-4\right)=0\)
\(\Leftrightarrow\left(t-1\right)\left(5t+4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}5t+4=0\\t-1=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}t=-\dfrac{4}{5}\left(l\right)\\t=1\end{matrix}\right.\)
\(\Rightarrow x^2-2x+2=1\)
\(\Leftrightarrow x=1\)
Vậy PT có 1 nghiệm là x = 1