Ôn tập phương trình bậc hai một ẩn

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Thị Thùy Dung

giải pt sau:

\(\left(\dfrac{x+2}{x^2-2x+1}-\dfrac{x-2}{x^2-1}\right)\dfrac{x+1}{x}=2\)

Nguyễn Việt Lâm
18 tháng 12 2018 lúc 18:09

ĐKXĐ: \(x\ne0;\pm1\)

\(\left(\dfrac{\left(x+2\right)\left(x+1\right)}{\left(x-1\right)^2}-\dfrac{\left(x-2\right)\left(x+1\right)}{\left(x+1\right)\left(x-1\right)}\right)\dfrac{1}{x}=2\)

\(\Leftrightarrow\dfrac{x^2+3x+2}{\left(x-1\right)^2}-\dfrac{x-2}{x-1}=2x\)

\(\Leftrightarrow\dfrac{x^2-2x+1+5x-5+6}{\left(x-1\right)^2}-\dfrac{x-1-1}{x-1}=2x\)

\(\Leftrightarrow1+\dfrac{5}{x-1}+\dfrac{6}{\left(x-1\right)^2}-1+\dfrac{1}{x-1}=2x\)

\(\Leftrightarrow\dfrac{3}{x-1}+\dfrac{3}{\left(x-1\right)^2}=x=x-1+1\)

Đặt \(\dfrac{1}{x-1}=a\) phương trình trở thành:

\(3a+3a^2=\dfrac{1}{a}+1=\dfrac{a+1}{a}\)

\(\Leftrightarrow3a\left(a+1\right)-\dfrac{a+1}{a}=0\)

\(\Leftrightarrow\left(a+1\right)\left(3a-\dfrac{1}{a}\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}a=-1\\3a=\dfrac{1}{a}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}a=-1\\a=\dfrac{\sqrt{3}}{3}\\a=\dfrac{-\sqrt{3}}{3}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}\dfrac{1}{x-1}=-1\\\dfrac{1}{x-1}=\dfrac{\sqrt{3}}{3}\\\dfrac{1}{x-1}=\dfrac{-\sqrt{3}}{3}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=0\left(l\right)\\x=1+\sqrt{3}\\x=1-\sqrt{3}\end{matrix}\right.\)


Các câu hỏi tương tự
Võ Huỳnh Minh Chương
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Toàn Trần
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Light Sunset
Xem chi tiết
nam do duy
Xem chi tiết
Thiên Lạc
Xem chi tiết
Nguyễn Ngọc Ánh
Xem chi tiết