3x+3x+1+3x+2=13
Giải pt: \(\sqrt{3x^2-7x+9}-\sqrt{x^2-2}=\sqrt{3x^2-5x-1}-\sqrt{x^2-3x+13}\)
ĐKXĐ:...
\(\sqrt{3x^2-5x-1}-\sqrt{3x^2-7x+9}+\sqrt{x^2-2}-\sqrt{x^2-3x+13}=0\)
\(\Leftrightarrow\frac{2\left(x-5\right)}{\sqrt{3x^2-5x-1}+\sqrt{3x^2-7x+9}}+\frac{3\left(x-5\right)}{\sqrt{x^2-2}+\sqrt{x^2-3x+13}}=0\)
\(\Leftrightarrow\left(x-5\right)\left(\frac{2}{\sqrt{3x^2-5x-1}+\sqrt{3x^2-7x+9}}+\frac{3}{\sqrt{x^2-2}+\sqrt{x^2-3x+13}}\right)=0\)
\(\Leftrightarrow x-5=0\) (ngoặc to phía sau luôn dương)
\(\Rightarrow x=5\)
(2x-1)^9-(2x-1)^11=0
(2-3x)^13=(3x-2)^12
+) \(\left(2x-1\right)^9-\left(2x-1\right)^{11}=0\)
\(\Leftrightarrow\left(2x-1\right)^9=\left(2x-1\right)^{11}\)
\(\Leftrightarrow\orbr{\begin{cases}2x-1=0\\2x-1=1\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{2}\\x=1\end{cases}}}\)
+) \(\left(2-3x\right)^{13}=\left(3x-2\right)^{12}\)
\(\Leftrightarrow\left(2-3x\right)^{13}=\left(2-3x\right)^{12}\)
\(\Leftrightarrow\orbr{\begin{cases}2-3x=0\\2-3x=1\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{2}{3}\\x=\frac{1}{3}\end{cases}}\)
\(\hept{\begin{cases}x^3+3x\left(y-1\right)=1+13\sqrt{y-1}\\3x^2y+y^2=3x^2+15y\end{cases}}\)
\(\sqrt{3x^2-7x+9x}-\sqrt{x^2-2}=\sqrt{3x^2-5x-1}-\sqrt{x^2-3x+13}\)
giải pt trên
Bài 4: Tìm x, biết:
a) 3(2x – 3) + 2(2 – x) = –3 ; b) x(5 – 2x) + 2x(x – 1) = 13 ;
c) 5x(x – 1) – (x + 2)(5x – 7) = 6 ; d) 3x(2x + 3) – (2x + 5)(3x – 2) = 8 ;
e) 2(5x – 8) – 3(4x – 5) = 4(3x – 4) + 11; f) 2x(6x – 2x 2 ) + 3x 2 (x – 4) = 8.
\(a,3\left(2x-3\right)+2\left(2-x\right)=-3\\ \Leftrightarrow6x-9+4-2x=-3\\ \Leftrightarrow4x=2\\ \Leftrightarrow x=\dfrac{1}{2}\\ b,x\left(5-2x\right)+2x\left(x-1\right)=13\\ \Leftrightarrow5x-2x^2+2x^2-2x=13\\ \Leftrightarrow3x=13\\ \Leftrightarrow x=\dfrac{13}{3}\\ c,5x\left(x-1\right)-\left(x+2\right)\left(5x-7\right)=6\\ \Leftrightarrow5x^2-5x-5x^2-3x+14=6\\ \Leftrightarrow-8x=-8\\ \Leftrightarrow x=1\\ d,3x\left(2x+3\right)-\left(2x+5\right)\left(3x-2\right)=8\\ \Leftrightarrow6x^2+9x-6x^2-11x+10=8\\ \Leftrightarrow-2x=-2\\ \Leftrightarrow x=1\)
\(e,2\left(5x-8\right)-3\left(4x-5\right)=4\left(3x-4\right)+11\\ \Leftrightarrow10x-16-12x+15=12x-16+11\\ \Leftrightarrow-14x=-4\\ \Leftrightarrow x=\dfrac{2}{7}\\ f,2x\left(6x-2x^2\right)+3x^2\left(x-4\right)=8\\ \Leftrightarrow12x^2-4x^3+3x^3-12x^2=8\\ \Leftrightarrow-x^3-8=0\\ \Leftrightarrow-\left(x^3+8\right)=0\\ \Leftrightarrow-\left(x+2\right)\left(x^2-2x+4\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=-2\\x\in\varnothing\left(x^2-2x+4=\left(x-1\right)^2+3>0\right)\end{matrix}\right.\)
Bài 4:
a: Ta có: \(3\left(2x-3\right)-2\left(x-2\right)=-3\)
\(\Leftrightarrow6x-9-2x+4=-3\)
\(\Leftrightarrow4x=2\)
hay \(x=\dfrac{1}{2}\)
b: Ta có: \(x\left(5-2x\right)+2x\left(x-1\right)=13\)
\(\Leftrightarrow5x-2x^2+2x^2-2x=13\)
\(\Leftrightarrow3x=13\)
hay \(x=\dfrac{13}{3}\)
c: Ta có: \(5x\left(x-1\right)-\left(x+2\right)\left(5x-7\right)=6\)
\(\Leftrightarrow5x^2-5x-5x^2+7x-10x+14=6\)
\(\Leftrightarrow-8x=-8\)
hay x=1
a/ \(3\left(2x-3\right)+2\left(2-x\right)=-3\)
\(\Leftrightarrow6x-9+4-2x=-3\)
\(\Leftrightarrow4x=2\)
\(\Leftrightarrow x=\dfrac{1}{2}\)
Vậy: \(x=\dfrac{1}{2}\)
===========
b/ \(x\left(5-2x\right)+2x\left(x-1\right)=13\)
\(\Leftrightarrow5x-2x^2+2x^2-2x=13\)
\(\Leftrightarrow3x=13\)
\(\Leftrightarrow x=\dfrac{13}{3}\)
Vậy: \(x=\dfrac{13}{3}\)
==========
c/ \(5x\left(x-1\right)-\left(x+2\right)\left(5x-7\right)=6\)
\(\Leftrightarrow5x^2-5x-5x^2+7x-10x+14=6\)
\(\Leftrightarrow-8x=-8\)
\(\Leftrightarrow x=1\)
Vậy: \(x=1\)
==========
d/ \(3x\left(2x+3\right)-\left(2x+5\right)\left(3x-2\right)=8\)
\(\Leftrightarrow6x^2+9x-6x^2+4x-15x+10=8\)
\(\Leftrightarrow-2x=-2\)
\(\Leftrightarrow x=1\)
Vậy: \(x=1\)
==========
e/ \(2\left(5x-8\right)-3\left(4x-5\right)=4\left(3x-4\right)+11\)
\(\Leftrightarrow10x-16-12x+15=12x-16+11\)
\(\Leftrightarrow-14x=-4\)
\(\Leftrightarrow x=\dfrac{2}{7}\)
Vậy: \(x=\dfrac{2}{7}\)
==========
f/ \(2x\left(6x-2x^2\right)+3x^2\left(x-4\right)=8\)
\(\Leftrightarrow12x^2-4x^3+3x^3-12x^2=8\)
\(\Leftrightarrow-x^3=8\)
\(\Leftrightarrow x=-2\)
Vậy: \(x=-2\)
( 3x + 1 ) ( x + 1 )² ( 3x + 5 ) = 13
Lời giải:
PT $\Leftrightarrow (3x+1)(3x+5)(x+1)^2=13$
$\Leftrightarrow (9x^2+18x+5)(x^2+2x+1)=13$
Đặt $x^2+2x+1=t\Rightarrow 9x^2+18x+5=9t-4$
Khi đó pt đã cho trở thành:
$(9t-4)t=13$
$\Leftrightarrow 9t^2-4t-13=0$
$\Leftrightarrow (t+1)(9t-13)=0\Rightarrow t=-1$ hoặc $9t=13$. Vì $t=x^2+2x+1=(x+1)^2\geq 0$ nên suy ra $9t=13$
$\Leftrightarrow 9x^2+18x+9=13$
$\Leftrightarrow 9x^2+18x-4=0$
$\Leftrightarrow x=\frac{-3\pm \sqrt{13}}{3}$
Vậy..........
Giải các phương trình sau:
a) 3 x − 1 2 − 2 − 6 x 5 = 1 2 + 3 x − 1 ;
b) x 2 + 2 x + 1 − x + 1 3 = 6 x + 1 2 − 5 x − 5 6 .
Giải phương trình sau:
a. 2|x+3|+|2x+5|=11
b. |x+1|+|2x-3|=|3x-2|
c.|3x+7|+3|2x-3|=13
b. `|x + 1| + |2x - 3| = |3x - 2|`
Ta có: \(\left|x+1\right|+\left|2x-3\right|\ge\left|x+1+2x-3\right|=\left|3x-2\right|\)
\(\Leftrightarrow\left|3x-2\right|=\left|3x-2\right|\) (luôn đúng với mọi x)
Vậy phương trình có vô số nghiệm.
3x - 2x=13-19
3x+7=4-3x
5 (×+1)-3×=×+9
3x - 2x = 13 - 19
x = -6
Vậy x = -6
3x + 7 = 4 - 3x
3x + 3x = 7 - 4
6x = 3
x = 3 : 6
x = \(\frac{1}{2}\)
Vậy x = \(\frac{1}{2}\)
5 ( x + 1 ) -3 x = x + 9
5 . x + 5 . 1 - 3x = x + 9
5x + 5 - 3x = x + 9
5x - x - 3x + 5 = 9
4x - 3x = 9 - 5
x = 4
Vậy x = 4
A) 3x-2x=13-19
=>. x=-6
Vậy x=-6
b)3x+7=4-3x
=>3x+3x=4-7
=>. 6x=-3
=>. x=-3/6
Vậy x=-3/6
c)5(x+1)-3x=x+9
=>5x+5-3x=x+9
=>. 5x-3x-x=9-5
=>. x=4
Vậy x=4
Chúc bạn học tốt nhé!
\(3x-2x=13-19\)
\(\Leftrightarrow\)\(x=-6\)
Vậy....
\(3x+7=4-3x\)
\(\Leftrightarrow\)\(6x=-3\)
\(\Leftrightarrow\)\(x=-\frac{1}{2}\)
Vậy...
\(5\left(x+1\right)-3x=x+9\)
\(\Leftrightarrow\)\(5x+5-3x=x+9\)
\(\Leftrightarrow\)\(x=4\)
Vậy...