Cho hình vuông ABCD có độ dài cạnh AC= 5cm
Độ dài đoạn thẳng BC bằng bao nhiêu ?
a) Cho đoạn thẳng BC = 4cm. Vẽ tam giác đều ABC. Có thể vẽ được bao nhiêu tam giác như vậy? b) Cho BC = 4cm. Vẽ hình vuông ABCD. Có thể vẽ được bao nhiêu hình vuông như vậy? c) Vẽ hình chữ nhật có một cạnh dài 6cm; một cạnh dài 4 cm d) Vẽ hình thoi có cạnh bằng 3 cm và độ dài đường chéo bằng 6cm
1 Hình vuông ABCD có cạnh AB=a. Gọi M là trung điểm của cạnh BC. Trên cạnh CD ta lấy điểm N sao cho khoảng cách từ đó đến đường thẳng AM bằng độ dài đoạn thẳng DN. Tính độ dài các đoạn thẳng AM, CN, MN
2 Cho tam giác vuông ABC vuông tại B có AB=3a, BC=4a. Ta dựng tam giác ACD vuông cân tại D sao cho D khác phía với B đối vớ đường thẳng AC. Tính độ dài AD,BD
Cho hình chữ nhật ABCD có cạnh BC =6cm,AB =8cm. Đường thẳng kẻ từ B vuông góc với AC tại E , cắt cạnh AD tại F
a) Tính độ dài các đoạn thẳng AC,AE,BE
b)Tính độ dài các cạnh và diện tích tam giác ABF
Áp dụng định lý Pitago cho tam giác vuông ABC
\(AC=\sqrt{AB^2+BC^2}=10\left(cm\right)\)
Áp dụng hệ thức lượng cho tam giác vuông ABC với đường cao BE:
\(AB^2=AE.AC\Rightarrow AE=\dfrac{AB^2}{AC}=6,4\left(cm\right)\)
\(AB.AC=BE.AC\Rightarrow AE=\dfrac{AB.AC}{BC}=4,8\left(cm\right)\)
b.
Ta có: \(EC=AC-AE=3,6\left(cm\right)\)
Do AB song song CF, theo định lý Talet:
\(\dfrac{CF}{AB}=\dfrac{CE}{AE}\Rightarrow CF=\dfrac{AB.CE}{AE}=4,5\left(cm\right)\)
\(\Rightarrow DF=DC-CF=8-4,5=3,5\left(cm\right)\)
Áp dụng định lý Pitago cho tam giác vuông ADF:
\(AF=\sqrt{AD^2+DF^2}=\dfrac{\sqrt{193}}{2}\left(cm\right)\)
Pitago tam giác vuông BCF:
\(BF=\sqrt{BC^2+CF^2}=7,5\left(cm\right)\)
Kẻ FH vuông góc AB \(\Rightarrow ADFH\) là hình chữ nhật (tứ giác 3 góc vuông)
\(\Rightarrow FH=AD=6\left(cm\right)\)
\(S_{ABF}=\dfrac{1}{2}FH.AB=\dfrac{1}{2}.6.8=24\left(cm^2\right)\)
Cho hình vuông ABCD có diện tích là 900 cm2. Lấy điểm M trên cạnh AB sao cho AM = 2MB. Kéo dài DM cắt đương thẳng BC tại N. Hỏi tỉ số độ dài đoạn NB và đoạn BC là bao nhiêu?
Giúp mình với
Hình vuông ABCD có cạnh bằng a.Gọi E là trung điểm cạnh BC, F là trung điểm AE.Tìm độ dài đoạn thẳng DF
Có :
\(\text{AE = DE = }\sqrt{a^2+\left(\dfrac{a}{2}\right)^2}=\dfrac{a\sqrt{5}}{2}\)
Dùng công thức độ dài trung tuyến:
\(DF^2=\dfrac{DA^2+DE^2}{2}-\dfrac{AE^2}{4}=\dfrac{a^2+\dfrac{5a^2}{4}}{2}-\dfrac{5a^2}{16}=\dfrac{13a^2}{16}\) \(\Rightarrow\) \(DF=\dfrac{a\sqrt{13}}{4}\)
bài 1
cho hình tam abc đều,có độ dài cạnh ab bằng 6 cm.Tính độ dài đoạn tẳng bc và ca
bài 2 cho hình vuông mnpq có độ dài cạnh pq bằng 5cm.Tính độ dài các đoạn thẳng mn,np,qm
hình vuông ABCD có cạnh bằng a. Gọi E là trung điểm cạnh BC, F là trung điểm cạnh AE. Tìm độ dài đoạn thẳng DF
E là trung điểmcủa BC
=>EB=EC=a/2
\(AE=\sqrt{AB^2+BE^2}=\dfrac{a\sqrt{5}}{2}\)
Xét ΔABE vuông tại B có \(\left\{{}\begin{matrix}cosBAE=\dfrac{AB}{AE}=\dfrac{a}{\dfrac{a\sqrt{5}}{2}}=\dfrac{2}{\sqrt{5}}\\sinBAE=\dfrac{BE}{AE}=\dfrac{0.5a}{\dfrac{a\sqrt{5}}{2}}=\dfrac{1}{\sqrt{5}}\end{matrix}\right.\)
=>\(cosDAF=cosBEA=sinBAE=\dfrac{1}{\sqrt{5}}\)
\(AF=\dfrac{AE}{2}=\dfrac{a\sqrt{5}}{4}\)
Xét ΔADF có \(cosDAF=\dfrac{AD^2+AF^2-DF^2}{2\cdot AD\cdot AF}\)
=>\(\dfrac{a^2+a^2\cdot\dfrac{5}{16}-DF^2}{2\cdot\dfrac{a\sqrt{5}}{4}\cdot a}=\dfrac{1}{\sqrt{5}}\)
=>\(\dfrac{\dfrac{21}{16}a^2-DF^2}{\dfrac{a^2\sqrt{5}}{2}}=\dfrac{1}{\sqrt{5}}\)
=>\(\dfrac{21}{16}a^2-DF^2=\dfrac{a^2}{2}\)
=>\(DF^2=\dfrac{13}{16}a^2\)
=>\(DF=\dfrac{a\sqrt{13}}{4}\)
Cho hình tam giác ABC vuông góc ở A, biết độ dài cạnh AB bằng 40cm, độ dài cạnh AC bằng 50cm. Trên cạnh AB lấy đoạn thẳng AD có độ dài 10cm, từ D kẻ đường thẳng song song với AC và cắt BC tại E. Tìm diện tích tam giác BDE. ( giải bằng 2 cách )
Giúp tui với bà Mai
Nối \(AE\), tam giác \(EAC\) có chiều cao bằng độ dài đoạn \(AD=10cm\).
Diện tích tam giác \(EAC\) bằng:
\(\frac{50\times10}{2}=250\left(cm^2\right)\)
Diện tích tam giác \(ABC\) bằng:
\(\frac{50\times40}{2}=1000\left(cm^2\right)\)
Diện tích tam giác \(BAE\) ( bằng diện tích tam giác \(ABC\) trừ đi diện tích tam giác \(EAC\) ):
\(1000-250=750\left(cm^2\right)\)
Chiều cao \(ED\) của tam giác \(BAE\) bằng:
\(\frac{750\times2}{40}=37,5\left(cm\right)\)
Độ dài cạnh \(BC\) bằng:
\(50-10=40\left(cm\right)\)
Vì \(DE\) song song với \(AC\) nên \(DE\) vuông góc với \(BD\). Vậy tam giác \(BDE\) là tam giác vuông tại \(D\) và có diện tích bằng:
\(\frac{40\times37,5}{2}=750\left(cm^2\right)\)
Đáp số: \(750cm^2\)
\(S\) \(ABC:\frac{40\times50}{2}=1000\left(cm^2\right)\)
\(S\) \(AEC:\frac{50\times10}{2}=250\left(cm^2\right)\)
\(S\) \(ABE:1000-250=750\left(cm^2\right)\)
\(DE:\frac{750\times2}{40}=37,5\left(cm\right)\)
\(S\) \(BDE:\frac{37,5\times30}{2}=562,5\left(cm^2\right)\)
Hãy giải thích: Nếu M là một điểm tùy ý nằm trên cạnh BC hoặc cạnh CD của hình vuông ABCD thì độ dài đoạn thẳng AM luôn lớn hơn hoặc bằng độ dài cạnh của hình vuông đó. (H.9.21)
Vì ABCD là hình vuông nên BC = CD ( tính chất)
* Với M nằm trên cạnh BC, ta xét 2 trường hợp sau:
+) M khác B
AB là đường vuông góc kẻ từ A đến BC; AM là đường xiên kẻ từ A đến BC nên AB < AM ( đường vuông góc luôn nhỏ hơn đường xiên). Do đó, AM lớn hơn độ dài cạnh của hình vuông
+) M trùng B:
AM = AB. Do đó, AM bằng độ dài cạnh của hình vuông
Trường hợp M nằm trên cạnh CD tương tự.
Vậy độ dài đoạn thẳng AM luôn lớn hơn hoặc bằng độ dài cạnh của hình vuông đó.