Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Trường Nguyễn Công

hình vuông ABCD có cạnh bằng a. Gọi E là trung điểm cạnh BC, F là trung điểm cạnh AE. Tìm độ dài đoạn thẳng DF

Nguyễn Lê Phước Thịnh
9 tháng 10 2023 lúc 20:31

E là trung điểmcủa BC

=>EB=EC=a/2

\(AE=\sqrt{AB^2+BE^2}=\dfrac{a\sqrt{5}}{2}\)

Xét ΔABE vuông tại B có \(\left\{{}\begin{matrix}cosBAE=\dfrac{AB}{AE}=\dfrac{a}{\dfrac{a\sqrt{5}}{2}}=\dfrac{2}{\sqrt{5}}\\sinBAE=\dfrac{BE}{AE}=\dfrac{0.5a}{\dfrac{a\sqrt{5}}{2}}=\dfrac{1}{\sqrt{5}}\end{matrix}\right.\)

=>\(cosDAF=cosBEA=sinBAE=\dfrac{1}{\sqrt{5}}\)

\(AF=\dfrac{AE}{2}=\dfrac{a\sqrt{5}}{4}\)

Xét ΔADF có \(cosDAF=\dfrac{AD^2+AF^2-DF^2}{2\cdot AD\cdot AF}\)

=>\(\dfrac{a^2+a^2\cdot\dfrac{5}{16}-DF^2}{2\cdot\dfrac{a\sqrt{5}}{4}\cdot a}=\dfrac{1}{\sqrt{5}}\)

=>\(\dfrac{\dfrac{21}{16}a^2-DF^2}{\dfrac{a^2\sqrt{5}}{2}}=\dfrac{1}{\sqrt{5}}\)

=>\(\dfrac{21}{16}a^2-DF^2=\dfrac{a^2}{2}\)

=>\(DF^2=\dfrac{13}{16}a^2\)

=>\(DF=\dfrac{a\sqrt{13}}{4}\)


Các câu hỏi tương tự
Nguyễn Thế Tuấn
Xem chi tiết
Lê Song Phương
Xem chi tiết
my hà
Xem chi tiết
Phạm Hoangg Hai Anh
Xem chi tiết
Linh Khanh
Xem chi tiết
Đạt Phúc
Xem chi tiết
Thị Thiệm Lê
Xem chi tiết
Nguyễn Thị Ngọc Ly
Xem chi tiết
Nguyễn Anh Đức
Xem chi tiết