Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Thỏ Nghịch Ngợm
Xem chi tiết
Thịnh Gia Vân
6 tháng 1 2021 lúc 20:24

I zì:vv

a) Ta có: \(A=4x^2+4x+11=4x^2+4x+1=10=\left(2x+1\right)^2+10\ge10\forall x\)

Vậy MinA=10 khi \(x=-\dfrac{1}{2}\)

b) Ta có: \(B=5-8x-x^2=-\left(x^2+8x-5\right)=-\left(x^2+8x+16-21\right)\)

\(=-\left(x+4\right)^2+21\le21\forall x\)

Vậy MaxB=21 khi x=-4

Đăng Vinh Nguyễn
Xem chi tiết
Thảo Nguyên Xanh
25 tháng 9 2016 lúc 22:33

a, (x-1)(x-3)+11

=x2-3x-x+3+11

=(x-2)2+10

Vì..................................

b,5-4x2+4x

=-(4x2-4x+4)+9

=-(2x-2)2+9

...........................................................

Nữ hoàng sến súa là ta
Xem chi tiết
Nguyệt
11 tháng 12 2018 lúc 21:31

\(A=x^2-4x+1\)

\(A=x^2-4x+4-3=\left(x-4\right)^2-3\ge-3\)

Dấu = xảy ra khi \(x-4=0\)

\(\Rightarrow x=4\)

Vậy ...

b) \(4x^2+4x+11\)

\(\left(2x\right)^2+4x+1^2+10=\left(2x+1\right)^2+10\ge10\)

dấu = xảy ra khi \(2x+1=0\)

\(x=-\frac{1}{2}\)

Vậy....

Duyên Phạm<3.03012004
11 tháng 12 2018 lúc 21:48

A=\(x^2-4x+1\)

=\(x^2-2.x.2+4-4+1\)

=\(\left(x-2\right)^2-3\ge-3\)              ( vì (x-2)^2 \(\ge0\)

Dấu "=" xảy ra khi và chỉ khi x-2=0

                                          <=> x=2

vậy GTNN của A là -3 khi x=2

B= \(4x^2+4x+11\)

 =\(\left(2x\right)^2+2.2x.1+1-1+11\)

 = \(\left(2x+1\right)^2-10\ge-10\)         ( vì \(\left(2x+1\right)^2\ge0\))

Dâu '=' xayr ra khii và chỉ khi 2x+1=0

                                      <=> 2x=-1

                                      <=> x = \(\frac{-1}{2}\)

Vậy GTNN của B là -10 khi x=\(\frac{-1}{2}\)

Chúc bạn buổi tối vui vẻ

Nguyệt
12 tháng 12 2018 lúc 12:12

ê, sorry :> lúc đs làm nhanh quá lộn dòng nì:

\(\left(x-2\right)^2-3\ge4\)

=>......

p/s: nguồn bn vừa tl(NĐD)

Huyền Lưu
Xem chi tiết
Nguyễn Lê Phước Thịnh
28 tháng 7 2023 lúc 23:27

1:

a: =x^2-7x+49/4-5/4

=(x-7/2)^2-5/4>=-5/4

Dấu = xảy ra khi x=7/2

b: =x^2+x+1/4-13/4

=(x+1/2)^2-13/4>=-13/4

Dấu = xảy ra khi x=-1/2

e: =x^2-x+1/4+3/4=(x-1/2)^2+3/4>=3/4

Dấu = xảy ra khi x=1/2

f: x^2-4x+7

=x^2-4x+4+3

=(x-2)^2+3>=3

Dấu = xảy ra khi x=2

2:

a: A=2x^2+4x+9

=2x^2+4x+2+7

=2(x^2+2x+1)+7

=2(x+1)^2+7>=7

Dấu = xảy ra khi x=-1

b: x^2+2x+4

=x^2+2x+1+3

=(x+1)^2+3>=3

Dấu = xảy ra khi x=-1

 

Lê Phương Mai
Xem chi tiết
Trên con đường thành côn...
19 tháng 7 2021 lúc 18:31

undefined

Trên con đường thành côn...
19 tháng 7 2021 lúc 18:37

undefinedundefined

Tư Linh
19 tháng 7 2021 lúc 18:40

bạn xem lại đề bài 1 là GTNN hay GTLN nha

Phan Ngọc Thùy Linh
Xem chi tiết
Pum Nhố ll xD Saint x
18 tháng 12 2016 lúc 16:54

\(A=x^2-4x^2+2-1=\left(x-2\right)^2-1\)

suy ra Amin=-1

Pum Nhố ll xD Saint x
18 tháng 12 2016 lúc 16:57

\(B=4x^2+4x+11=4\left(x^2+x+\frac{11}{4}\right)=4\left(x^2+2\cdot x\cdot\frac{1}{2}+\frac{1}{4}+\frac{10}{4}\right)=4\left(x+\frac{1}{2}\right)^2+10\) Suy ra Bmin = 10

phạm hương trà
28 tháng 2 2017 lúc 18:15

phần B có bạn làm rồi nha mình không làm nữa

A=x2-4x+1=x2-4x+4-3=(x-2)2-3

Vì (x-2)2\(\ge\)0\(\forall\)x \(\Rightarrow\)(x-2)2-3\(\ge\)-3\(\forall\)x

Vậy minA = -3

C=(x-1)(x+3)(x+2)(x+6)

C=(x-1)(x+6)(x+3)(x+2)

C=(x2+5x-6)(x2+5x+6)

Đặt x2+5x+6=t . Ta có:

C= (t-12).t=t2-12t=t2-12+36-36=(t-6)2-36

C= (x2+5x+6-6)2-36=(x2+5x)2-36

Vì (x2+5x)2\(\ge\)0\(\forall\)x \(\Rightarrow\)(x2+5x)2-36\(\ge\)-36\(\forall\)x

Vậy minC= -36

D=5-8x-x2=-(x2+8x-5)=-(x2+8x+16-21)=-\(\left[\left(x+4\right)^2-21\right]\)

D=-(x+4)2+21=21-(x+4)2

Vì (x+4)2\(\ge\)0\(\forall\)x\(\Rightarrow\)21-(x+4)2\(\le\)21\(\forall\)x

Vậy maxD=21

E=4x-x2+1=-(x2-4x-1)=-(x2-4x+4-5)=-\(\left[\left(x-2\right)^2-5\right]\)=-(x-2)2+5=5-(x-2)2

Vì (x-2)2\(\ge0\forall x\)\(\Rightarrow\)5-(x-2)2\(\le5\forall x\)

Vậy maxE=5

Nguyen Phuong Vy
Xem chi tiết
Nguyễn bá trung quân
18 tháng 10 2016 lúc 19:52

đơn giản wá 

Nguyễn Văn Tuấn Anh
8 tháng 7 2019 lúc 13:53

a) \(A=x^2-3x-x+3+11\) 

      \(=\left(x^2-4x+4\right)+10\)

      \(=\left(x-2\right)^2+10\ge10\forall x\in R\) 

Dấu "=" xảy ra<=> \(\left(x-2\right)^2=0\Leftrightarrow x=2\) 

b) \(B=5-4x^2+4x\) 

      \(=-\left(4x^2-4x+1\right)+6\) 

      \(=-\left(2x-1\right)^2+6\le6\forall x\in R\)

Dấu "=" xảy ra<=> \(-\left(2x-1\right)^2=0\Leftrightarrow2x=1\Leftrightarrow x=\frac{1}{2}\)

c) \(C=\left(x^2-3x+1\right)\left(x^2-3x-1\right)\)

       \(=\left(x^2-3x\right)^2-1\ge-1\forall x\in R\)

Dấu "=" xảy ra<=>\(\left(x^2-3x\right)^2=0\Leftrightarrow x\left(x-3\right)=0\Leftrightarrow x=0;x=3\) 

Nguyen Phuong Vy
Xem chi tiết
Nguyễn Nhã Linh
Xem chi tiết