giải hpt
x2y+xy2=0
2x2+3xy+2y2=1
- 2x2 + xy2 tại x= -1 ; y = - 4 là
- x2y + 2y2 tại x= 0 ; y = - 2 là
giảng cho mình chi tiết bài này với ạ mình cảm ơn nhìu
-2\(x^2+xy^2\) (\(xy^2\) là \(1xy^2\) )
=(\(-2+1\)) (\(x^2.x\)) . \(y^2\) (Ta nhân số theo số và phần biến theo phần biến)
= -1\(x^3y^2\)
Tại \(x\)= -1 ; \(y\) = - 4 ta có
-1.(-1)\(^3\).(-4)\(^2\)= -1.(-1). 16 = 16
Vậy tại x= -1 ; y = - 4 biểu thức -2\(x^2+xy^2\) là 16
\(-x^2y+2y^2\) (\(-x^2y\) là \(-1x^2y\))
= (-1+2). \(x^2.\left(y.y^2\right)\)
= 1\(x^2y^3\)
Tại x= 0 ; y = - 2 ta có
1.\(\left(0\right)^2.\left(-2\right)^3\)= 1. 0. -8 = 0 (0 nhân với số nào cũng bằng 0)
Vậy tại x= 0 ; y = - 2 biểu thức \(-x^2y+2y^2\) là 0
NHỮNG CHỖ NÀO CÓ IN ĐẬM VÀ NGHIÊNG LÀ KHÔNG GHI NHA
phân tích đa thức thành nhân tử 2 ẩn :
a) 2x2+xy-y2-x+2y-1
b) 3x2-2xy-y2-10x-2y+3
c) 3x2y-xy2+xy-2y2-3x-9y+5
d) 2x2y2-3xy-2y2+y+1
e) 3x3-12xy2-5x2-4y2+x+1
a)2x^2+xy-y^2-x+2y-1
=2x^2+xy-x-(y-1)^2
=2x^2+x(y-1)-(y-1)^2
=2a^2+ab-b^2 với a=x,b=y-1
=2a^2+2ab-ab-b^2
=(2a-b)(a+b)
=(2x-y+1)(x+y-1)
Cho hai đa thức A = x 2 y - x y 2 + 3 x 2 , B = x 2 y + x y 2 - 2 x 2 - 1 . Tính đa thức A + 2B.
A. 2 x 2 y + x y 2 - x 2 - 2
B. 3 x 2 y - x 2 - 2
C. 3 x 2 y + x y 2 - x 2 - 2
D. 2 x 2 y + x y 2 - x 2 - 2
Ta có A + 2B = (x2y - xy2 + 3x2) + 2(x2y + xy2 - 2x2 - 1)
= x2y - xy2 + 3x2 + 2x2y + 2xy2 - 4x2 - 2
= 3x2y + xy2 - x2 - 2. Chọn C
Đơn thức đồng dạng với đơn thức 3xy2 là:
A. 3xy B. -1/.x2y C. 3xy2 + 1 D. xy2
Tính giá trị của biểu thức C tại x=2 ; y=-1 biết 2xy2 - 3xy + x2 -4 - C = xy2 - x2 + 2y2 + 1
\(2xy^2-3xy+x^2-4-C=xy^2-x^2+2y^2+1\)
\(\Rightarrow C=2xy^2-3xy+x^2-4-\left(xy^2-x^2+2y^2+1\right)\)
\(=2xy^2-3xy+x^2-4-xy^2+x^2-2y^2-1\)
\(=xy^2-3xy+2x^2-2y^2-5\)
Thay x = 2 và y = -1 vào C ta được :
\(C=2.\left(-1\right)^2-3.2.\left(-1\right)+2.2^2-2.\left(-1\right)^2-5=9\)
Vậy : Khi x = 2 và y = -1 thì giá trị của C là -9.
Bài 1: Rút gọn rồi tính giá trị biểu thức:
a) A = 4x2.(-3x2 + 1) + 6x2.( 2x2 – 1) + x2 khi x = -1
b) B = x2.(-2y3 – 2y2 + 1) – 2y2.(x2y + x2) khi x = 0,5 và y = -1/2
Bài 2: Tìm x, biết:
a) 2(5x - 8) – 3(4x – 5) = 4(3x – 4) +11
b) 2x(6x – 2x2) + 3x2(x – 4) = 8
c) (2x)2(4x – 2) – (x3 – 8x2) = 15
Bài 3: Chứng tỏ rằng giá trị của biểu thức sau không phụ thuộc vào giá trị của biến x:
P = x(2x + 1) – x2(x+2) + x3 – x +3
\(1,\\ a,A=4x^2\left(-3x^2+1\right)+6x^2\left(2x^2-1\right)+x^2\\ A=-12x^4+4x^2+12x^2-6x^2+x^2=-x^2=-\left(-1\right)^2=-1\\ b,B=x^2\left(-2y^3-2y^2+1\right)-2y^2\left(x^2y+x^2\right)\\ B=-2x^2y^3-2x^2y^2+x^2-2x^2y^3-2x^2y^2\\ B=-4x^2y^3-4x^2y^2+x^2\\ B=-4\left(0,5\right)^2\left(-\dfrac{1}{2}\right)^3-4\left(0,5\right)^2\left(-\dfrac{1}{2}\right)^2+\left(0,5\right)^2\\ B=\dfrac{1}{8}-\dfrac{1}{4}+\dfrac{1}{4}=\dfrac{1}{8}\)
\(2,\\ a,\Leftrightarrow10x-16-12x+15=12x-16+11\\ \Leftrightarrow-14x=-4\\ \Leftrightarrow x=\dfrac{2}{7}\\ b,\Leftrightarrow12x^2-4x^3+3x^3-12x^2=8\\ \Leftrightarrow-x^3=8=-2^3\\ \Leftrightarrow x=2\\ c,\Leftrightarrow4x^2\left(4x-2\right)-x^3+8x^2=15\\ \Leftrightarrow16x^3-8x^2-x^3+8x^2=15\\ \Leftrightarrow15x^3=15\\ \Leftrightarrow x^3=1\Leftrightarrow x=1\)
\(P=x\left(2x+1\right)-x^2\left(x+2\right)+x^3-x+3\\ P=2x^2+x-x^3-2x^2+x^3-x+3\\ P=3\left(đfcm\right)\)
Chứng minh đẳng thức:
2x2+3xy+y2/2x3+x2y-2xy2-y3=1/x-y
\(VT=\dfrac{2x^2+2xy+xy+y^2}{x^2\left(2x+y\right)-y^2\left(2x+y\right)}=\dfrac{2x\left(x+y\right)+y\left(x+y\right)}{\left(x^2-y^2\right)\left(2x+y\right)}\\ =\dfrac{\left(2x+y\right)\left(x+y\right)}{\left(2x+y\right)\left(x-y\right)\left(x+y\right)}=\dfrac{1}{x-y}=VP\)
1. Tìm số nguyên:
a, xy - x - y = 2
b, 2x2 + 3xy - 2y2 = 7
\(a,xy-x-y=2\\ x\left(y-1\right)-y=2\\ x\left(y-1\right)-y+1=2+1\\ x\left(y-1\right)-\left(y-1\right)=3\\ \left(y-1\right)\left(x-1\right)=3\\ Th1:x-1=-1=>x=0\\ y-1=-3=>y=-2\\ Th2:x-1=-3 =>x=-2\\ y-1=-1=> y=0\\ Th3:x-1=3=> x=4\\ y-1=1=>y=2\\ Th4:x-1=1=>x=2\\ y-1=3=>y=4\)
Vậy......
\(b,2x^2+3xy-2y^2=7\\ 2x^2+\left(4xy-xy\right)-2y^2=7\\ x\left(2x-y\right)+2y\left(2x-y\right)=7\\ \left(2x-y\right)\cdot\left(x+2y\right)=7\)
Nếu 2x-y=1; x+2y = 7
=> 2(2x-y) + x + 2y = 9
=> 4x - 2y + x +2y = 9
=> (4x+x) + (2y-2y) = 9
=> 5x + 0 = 9
=> x = 9/5 (ktm)
Nếu 2x-y=7; x+2y = 1
=> 2(2x-y) + x+ 2y = 15
=> 4x - 2y + x +2y =15
=> (4x +x)+ (2y-2y) =15
=> 5x +0 =15
=> x= 3 (tm)
=> y= -1 (Tm)
Nếu 2x-y=-7; x+2y = -1
=> 2(2x-y) + x+ 2y = -15
=> 4x - 2y + x +2y =-15
=> (4x +x)+ (2y-2y) =-15
=> 5x +0 =-15
=> x= -3 (tm)
=> y= 1 (tm)
Nếu 2x-y=-1 ; x+2y = -7
=> 2(2x-y) + x+ 2y = -9
=> 4x - 2y + x +2y = -9
=> (4x +x)+ (2y-2y) =-9
=> 5x +0 =-9
=> x= -9/5 (ktm)
=> y= -1
Vậy.........
Cho đa thức A = 5 x2y + xy – xy2 - x2y + 2xy + x2y + xy + 6. Thu gọn rồi xác định bậc của đa thức.
a/ Tìm đa thức B sao cho A + B = 0
b/ Tìm đa thức C sao cho A + C = -2xy + 1
Bài 6: Cho đa thức F(x) = 2x3 – x5 + 3x4 + x2 - x3 + 3x5 – 2x2 - x4 + 1
\(A=5x^2y-xy^2+4xy+6\) bậc : 3
a)\(B=-5x^2y+xy^2-4xy-6\)
b)\(=>C=-2xy+1-5x^2y+xy^2-4xy-6\)
\(C=-5x^2y+xy^2-6xy-5\)
Cho hệ phương trình x 3 - y 3 - x 2 y + x y 2 - 2 x y - x + y = 0 x - y = x 3 - 2 x 2 + y + 2 Số nghiệm của hệ phương trình là:
A. 2
B. 1
C. 0
D. 3