Nghiệm của hệ phương trình sau là:
A. x = 2, y = -3 B. x = -2, y = 3
C. x = -1, y = -2 D. x = 1, y = 5
Giải hệ phương trình:
a, \(\hept{\begin{cases}x^2+y^2+\frac{2xy}{x+y}=1\\\sqrt{x+y}=x^2-y\end{cases}}\)
b,\(\hept{\begin{cases}x^3-6x^2y+9xy^2-4y^3=0\\\sqrt{x-y}+\sqrt{x+y}=2\end{cases}}\)
Cho hệ phương trình x + y + 1 + 1 = 4 x + y 2 + 3 . x + y 2 x - y = 3 2 .Giả sử (x;y) là cặp nghiệm của hệ phương trình. Khi đó, A = 9x2 – 12y + 1 bằng
A. 3
B. 9
C. 4
D. 7
a, giải phương trình : 4x²+√2x+3=8x+1
B, giải hệ phương trình :
{√x+y+1+(x+2y)=4(x+y) ²+√3*√x+y
X-4y-3=(2y)²-√2-x²
cặp số (-1;2) là nghiệm của bất phương trình nào sau đây?
a) 2x - y +3 > 0 c) x - y - 15 < 0
b) -x + 2 + 2(y - 2) < 2(2 - x) d) 3(x - 1) + 4(y - 2) < 5x - 3
Cho hệ phương trình 5 x + 2 y = - 3 3 x + y = - 2
Giả sử (x;y) là nghiệm của hệ phương trình, khi đó - x . y 3 bằng
A. -1.
B. 1
C. 2
D. -2
Giải hệ phương trình:
\(\hept{\begin{cases}x^2+3+xy+y^2-5y=0\\y\left(x+y+1\right)^2-8\left(x^2+3\right)=0\end{cases}}\)
Cần gấp trước 9h sáng nay nha mn!
tìm m để hệ phương trình có nghiệm duy nhất
\(\left\{{}\begin{matrix}x+y+xy=3\\x^2+y^2+3\left(x+y\right)=m\end{matrix}\right.\)
giải hệ phương trình \(\hept{\begin{cases}\sqrt{3+x^2}+2\sqrt{x+3}=5+\sqrt{y+3}\\\sqrt{3+y^2}+2\sqrt{y+3}=5+\sqrt{x+3}\end{cases}}\)
Giải hệ phương trình :
\(\left\{{}\begin{matrix}\sqrt{3+2x^2y-x^4y^2}+x^4\left(1-2x^2\right)=y^2\\1+\sqrt{1+\left(x-y\right)^2}=x^3\left(x^3-x+2y^2\right)\end{matrix}\right.\)