Lời giải:
PT $(1)\Leftrightarrow xy(x+y)=0$
\(\Rightarrow \left[\begin{matrix} x=0\\ y=0\\ x=-y\end{matrix}\right.\)
Nếu $x=0$. Thay vào PT $(2)$ ta có:\(2y^2=1\Rightarrow y=\pm \sqrt{\frac{1}{2}}\)
Nếu $y=0$. Thay vào PT $(2)$ ta có: \(2x^2=1\Rightarrow x=\pm \sqrt{\frac{1}{2}}\)
Nếu $x=-y$. Thay vào PT $(2)$ ta có:
\(2(-y)^2+3(-y)y+2y^2=1\)
\(\Leftrightarrow y^2=1\Rightarrow y=\pm 1\Rightarrow x=\mp 1\)
Vậy $(x,y)=(1;-1); (-1;1); (0; \pm \sqrt{\frac{1}{2}}); (\pm \sqrt{\frac{1}{2}}; 0)$
Lời giải:
PT $(1)\Leftrightarrow xy(x+y)=0$
\(\Rightarrow \left[\begin{matrix} x=0\\ y=0\\ x=-y\end{matrix}\right.\)
Nếu $x=0$. Thay vào PT $(2)$ ta có:\(2y^2=1\Rightarrow y=\pm \sqrt{\frac{1}{2}}\)
Nếu $y=0$. Thay vào PT $(2)$ ta có: \(2x^2=1\Rightarrow x=\pm \sqrt{\frac{1}{2}}\)
Nếu $x=-y$. Thay vào PT $(2)$ ta có:
\(2(-y)^2+3(-y)y+2y^2=1\)
\(\Leftrightarrow y^2=1\Rightarrow y=\pm 1\Rightarrow x=\mp 1\)
Vậy $(x,y)=(1;-1); (-1;1); (0; \pm \sqrt{\frac{1}{2}}); (\pm \sqrt{\frac{1}{2}}; 0)$