Tìm rút gọn phương trình và tìm x?
\(\dfrac{x^2+4x-1}{x-2}=\dfrac{x-3}{x+2}+1\)
Tìm TXĐ của biểu thức, rút gọn biểu thức và tìm giá trị của x để biểu thức, thu dọn âm:
(\(\dfrac{x+2}{3x}\) + \(\dfrac{2}{x+1}\) - 3) : \(\dfrac{2-4x}{x+1}\) + \(\dfrac{x^2-3x-1}{3x}\)
TXĐ: \(\left\{{}\begin{matrix}x\in R\\x\notin\left\{0;-1\right\}\end{matrix}\right.\)
c1: Rút gọn biểu thức A=\(\left(\dfrac{1}{x-2\sqrt{x}}-\dfrac{2}{6-3\sqrt{x}}\right):\left(\dfrac{2}{3}+\dfrac{1}{\sqrt{x}}\right)\)
c2: Cho phương trình: \(x^2-2\left(2m-1\right)x+m^2-4m=0\left(1\right)\)
Tìm m để phương trình (1) có hai nghiệm phân biệt x1, x2 thoả mãn hệ thức \(x_1+x_2=\dfrac{-8}{x_1+x_2}\)
1:
\(=\left(\dfrac{1}{x-2\sqrt{x}}+\dfrac{2}{3\sqrt{x}-6}\right):\dfrac{2\sqrt{x}+3}{3\sqrt{x}}\)
\(=\dfrac{3+2\sqrt{x}}{3\sqrt{x}\left(\sqrt{x}-2\right)}\cdot\dfrac{3\sqrt{x}}{2\sqrt{x}+3}=\dfrac{1}{\sqrt{x}-2}\)
\(\dfrac{-3}{x+2}\) \(-\)\(\dfrac{2}{x-2}\) + \(\dfrac{4x}{x^2-4}\) (với x \(\ne\) 2 và x \(\ne\) \(-\) 2).
a Rút gọn biểu thức B.
b Tìm x để B = \(\dfrac{1}{4}\)
\(=\dfrac{-3\left(x-2\right)-2\left(x+2\right)+4x}{x^2-4}\)
\(=\dfrac{-3x+6-2x-4+4x}{x^2-4}\)
\(=\dfrac{-x+2}{\left(x-2\right)\left(x+2\right)}\)
\(=\dfrac{-\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}\)
\(=-\dfrac{1}{x+2}\left(x\ne2;x\ne-2\right)\)
\(\dfrac{-3}{x+2}-\dfrac{2}{x-2}+\dfrac{4x}{x^2-4}\left(x\ne\pm2\right)\)
\(=\dfrac{-3\left(x-2\right)-2\left(x+2\right)+4x}{\left(x-2\right)\left(x+2\right)}\)
\(=\dfrac{-3x+6-2x-4+4x}{\left(x-2\right)\left(x+2\right)}\)
\(=\dfrac{-x+2}{\left(x-2\right)\left(x+2\right)}\)
\(=-\dfrac{1}{x+2}\)
TXĐ: \(\left\{{}\begin{matrix}x\in R\\x\notin\left\{0;2;-2\right\}\end{matrix}\right.\)
Ta có: \(\left(\dfrac{x^2}{x^3-4x}+\dfrac{6}{6-3x}+\dfrac{1}{x+2}\right):\left(x-2+\dfrac{10-x^2}{x+2}\right)\)
\(=\left(\dfrac{x^2}{x\left(x-2\right)\left(x+2\right)}-\dfrac{6\left(x+2\right)}{3\left(x-2\right)\left(x+2\right)}+\dfrac{x-2}{\left(x+2\right)\left(x-2\right)}\right):\left(\dfrac{\left(x-2\right)\left(x+2\right)+10-x^2}{x+2}\right)\)
\(=\dfrac{x-2\left(x+2\right)+x-2}{\left(x-2\right)\left(x+2\right)}:\dfrac{x^2-4+10-x^2}{x+2}\)
\(=\dfrac{x-2x-4+x-2}{\left(x-2\right)\left(x+2\right)}\cdot\dfrac{x+2}{6}\)
\(=\dfrac{-6}{x-2}\cdot\dfrac{1}{6}\)
\(=\dfrac{-1}{x-2}\)
1 .A=\(\dfrac{2x}{x^2-3}+\dfrac{2x}{x^2-4x+3}+\dfrac{x}{x-1}\)
a) Rút gọn A
b) Tìm x để A nguyên
a, đề này chắc sai ở đoạn \(\dfrac{2x}{x^2-3}\) sửa thành \(\dfrac{2x}{x-3}\)
\(=>đk:x\ne1,x\ne3\)
\(=>A=\dfrac{2x}{x-3}+\dfrac{2x}{x^2-4x+3}+\dfrac{x}{x-1}\)
\(=\dfrac{2x\left(x-1\right)+2x+x\left(x-3\right)}{\left(x-1\right)\left(x-3\right)}=\dfrac{2x^2-2x+2x+x^2-3x}{\left(x-1\right)\left(x-3\right)}\)
\(=\dfrac{3x^2-3x}{\left(x-1\right)\left(x-3\right)}=\dfrac{3x\left(x-1\right)}{\left(x-1\right)\left(x-3\right)}=\dfrac{3x}{x-3}\)
b, \(A=\dfrac{3x}{x-3}=3+\dfrac{9}{x-3}\)
A nguyên <=>\(x-3\inƯ\left(9\right)=\left\{\pm1;\pm3;\pm9\right\}\)
\(=>x\in\left\{4;2;6;0;12;-6\right\}\left(TM\right)\)
\(A=\left(\dfrac{4x}{x+2}-\dfrac{x^3-8}{x^3+8}\times\dfrac{4x^2-8x+16}{x^2-4}\right)\div\dfrac{16}{x+2}\times\dfrac{x^2+3x+2}{x^2+x+1}\)
\(B=\dfrac{x^2+x-2}{x^3-1}\)
a) Tìm ĐKXĐ của A, B. Rút gọn A, B
b)Tìm GTLN của A+B
Cho A=\(\dfrac{\sqrt{x}+1}{\sqrt{x}-1}+\dfrac{\sqrt{x}-1}{\sqrt{x}+1}+\dfrac{\sqrt{x}+3}{1-x}\) với x≥0,x≠1
a) Rút gọn A
b) Tìm m để phương trình mA=\(\sqrt{x}-2\) có 2 nghiệm phân biệt
c) Tìm x để A nhận giá trị nguyên
M=\(\left(\dfrac{x^2-2x}{2x^2+8}-\dfrac{2x^2}{8-4x+2x^2-x^3}\right)\left(1-\dfrac{1}{x}-\dfrac{2}{x^2}\right)\)
a) tìm ĐKXĐ của x
b) rút gọn M
c) tìm x để M≥-3
a: ĐKXĐ: x<>2; x<>0
b: \(M=\left(\dfrac{x^2-2x}{2\left(x^2+4\right)}+\dfrac{2x^2}{\left(x-2\right)\left(x^2+4\right)}\right)\cdot\dfrac{x^2-x-2}{x^2}\)
\(=\dfrac{\left(x^2-2x\right)\left(x-2\right)+4x^2}{2\left(x-2\right)\left(x^2+4\right)}\cdot\dfrac{\left(x-2\right)\left(x+1\right)}{x^2}\)
\(=\dfrac{x^3-2x^2-2x^2+4x}{2\left(x^2+4\right)}\cdot\dfrac{x+1}{x^2}\)
\(=\dfrac{x}{2}\cdot\dfrac{x+1}{x^2}=\dfrac{x+1}{2x}\)
c: M>=-3
=>(x+1+6x)/2x>=0
=>(7x+1)/x>=0
=>x>0 hoặc x<=-1/7
Cho biểu thức B =(\(\dfrac{x^3}{x^3-4x}+\dfrac{6}{^{6-3x}}+\dfrac{1}{2+x}\)): (x+2+\(\dfrac{10-x^2}{x-2}\))
a) Rút gọn B
b) Tìm B biết x2-5x+6=0
c) Tìm x ∈ Z để B ∈ Z
d) Tìm x biết |B|>1
\((\dfrac{x+2}{3x}+\dfrac{2}{x+1}-3):\dfrac{2-4x}{x+1}-\dfrac{3x-x^2+1}{3x}\)
a) Rút gọn D
b)Tính D với x = 2010
c)Tìm x để D < 0
d) Tìm x ∈ Z để \(\dfrac{1}{D}\)∈ Z
Ai giúp mik với^^sẽ follow và tick đúng cho ai làm đc ạ