\(\dfrac{x^2+4x-1}{x-2}\)-\(\dfrac{x-3}{x+2}\)= 1
⇔\(\dfrac{\left(x^2+4x-1\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}\)-\(\dfrac{\left(x-3\right)\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}\)=1
ô xem lại xem có sai đề bài ko bạn mình thấy nó cứ thế nào ý
\(\Leftrightarrow\left(x^2+4x-1\right)\left(x+2\right)=\left(x-3\right)\left(x-2\right)+x^2-4\)
\(\Leftrightarrow x^3+2x^2+4x^2+8x-x-2=x^2-5x+6+x^2-4\)
\(\Leftrightarrow x^3+6x^2+7x-2=2x^2-5x+2\)
=>x^3+4x^2+12x-4=0
hay \(x\simeq0,3\)