Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lê Đức Anh
Xem chi tiết
Vương Hoàng Minh
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
17 tháng 9 2023 lúc 22:11

Xét tam giác ABC có: D nằm trong tam giác và \(DA \bot BC;DB \bot CA\).

Suy ra: D là giao điểm của hai đường cao của tam giác ABC hay D là trực tâm của tam giác ABC.

Vậy \(DC \bot AB\).

anh trung
Xem chi tiết
Nguyễn Lê Phước Thịnh
11 tháng 8 2021 lúc 23:57

a: Xét ΔAEB và ΔADC có 

AE=AD

\(\widehat{DAC}\) chung

AB=AC

Do đó: ΔAEB=ΔADC

Suy ra: BE=CF

b: Ta có: AD+DB=AB

AE+EC=AC

mà AD=AE

và AB=AC

nên DB=EC

Xét ΔDBC và ΔECB có 

DB=EC

\(\widehat{DBC}=\widehat{ECB}\)

BC chung

Do đó: ΔDBC=ΔECB

Suy ra: \(\widehat{ODB}=\widehat{OEC}\)

Xét ΔODB và ΔOEC có 

\(\widehat{ODB}=\widehat{OEC}\)

BD=EC

\(\widehat{DBO}=\widehat{ECO}\)

Do đó: ΔODB=ΔOEC

~Alpaca~
Xem chi tiết
Nguyễn Lê Phước Thịnh
16 tháng 2 2021 lúc 20:23

Sửa đề: Bỏ D là trung điểm của BC và bỏ luôn góc D vuông

a) Sửa đề: Chứng minh ΔABD=ΔACD

Xét ΔABD vuông tại D và ΔACD vuông tại D có 

AB=AC(ΔABC đều)

AD chung

Do đó: ΔABD=ΔACD(cạnh huyền-cạnh góc vuông)

Suy ra: BD=CD(hai cạnh tương ứng)

b) Ta có: AB=BC(ΔABC đều)

mà BC=6cm(gt)

nên AB=6cm

Ta có: BD=CD(cmt)

mà BD+CD=BC(D nằm giữa B và C)

nên \(BD=CD=\dfrac{BC}{2}=\dfrac{6}{2}=3\left(cm\right)\)

Áp dụng định lí Pytago vào ΔABD vuông tại D, ta được:

\(AB^2=AD^2+BD^2\)

\(\Leftrightarrow AD^2=AB^2-BD^2=6^2-3^2=27\)

hay \(AD=3\sqrt{3}cm\)

Vậy: \(AD=3\sqrt{3}cm\)

c) Ta có: ΔABC đều(gt)

nên \(\widehat{C}=60^0\)

Ta có: BD=DC(cmt)

mà D nằm giữa B và C(gt)

nên D là trung điểm của BC

hay \(CD=\dfrac{BC}{2}\)(1)

Ta có: E là trung điểm của AC(gt)

nên \(CE=\dfrac{AC}{2}\)(2)

Ta có: ΔABC đều(gt)

nên BC=AC(3)

Từ (1), (2) và (3) suy ra CE=CD

Xét ΔCED có CE=CD(cmt)

nên ΔCED cân tại C(Định nghĩa tam giác cân)

Xét ΔCED cân tại C có \(\widehat{C}=60^0\)(cmt)

nên ΔCED đều(Dấu hiệu nhận biết tam giác đều)

d) Xét ΔCAB có 

D là trung điểm của BC(cmt)

E là trung điểm của AC(gt)

Do đó: DE là đường trung bình của ΔCAB(Định nghĩa đường trung bình của tam giác)

hay DE//BA(Định lí 2 về đường trung bình của tam giác)

nguyen thi thao
Xem chi tiết
nguyen thi thao
Xem chi tiết
hoàng nguyễn anh thảo
Xem chi tiết
hoàng nguyễn anh thảo
2 tháng 5 2017 lúc 9:50

bạn nào giúp mk vẽ hình đc không

IS
27 tháng 2 2020 lúc 20:13

Xét ΔADE và ΔABC có :
AD = AB (gt)

góc DAE =góc BAC = 90 độ
AE = AC (gt)
Do đó : ΔADE = ΔABC(c − g − c)
⇒ DE = BC ( hai cạnh tương ứng )
b.
Ta có :
góc ADE =góc CDN ( hai góc đối đỉnh )
góc C= góc E
( vì ΔADE = ΔABC )
⇒ góc N = góc A 90đọ
Hay DE ⊥ BC
Vậy DE ⊥ BC

Khách vãng lai đã xóa
Đoàn Phạm Đức	Khang
26 tháng 2 2023 lúc 19:47

CẢNH BÁO! Tiếp tục đọc, hoặc linh hồn của bạn sẽ được thực hiện, ngay cả khi bạn đọc từ "cảnh báo"! Có một lần là một người tên là Duke Hunapon. Anh ta lười biếng, và rất bảnh bao. Anh ấy luôn mặc một chiếc áo khoác, không có vấn đề gì ở bên ngoài. Anh ta có một người anh trai tên là Michael, người luôn làm anh ta vây quanh. Một ngày nọ, Michael bị giết, và nó ảnh hưởng rất nhiều đến Duke. Anh ta phát điên và bắt đầu giết người. Chẳng mấy chốc, anh ta đã chiến đấu với ai đó và bị giết. Bây giờ, anh ta đi lang thang xung quanh như một bộ xương cao với một chiếc áo sơ mi màu đỏ, và cùng một chiếc áo hoodie mà Duke đã mặc. Bộ xương này được gọi là "Swapfell Papyrus", và anh ta sẽ giết bạn nếu bạn không đăng bài này trên 15 phần bình luận của bất kỳ trang web nào trước khi đi ngủ. Nếu bạn thất bại, và bạn thức dậy khi anh ta ở trong phòng của bạn, cái chết của bạn sẽ chậm và rất đau đớn. Một cô gái tên Lily Lilupanin đọc điều này, và không nghe. Cô bị hãm hiếp và bị giết trong giấc ngủ. Nếu bạn sao chép và dán vào 15 phần bình luận của bất kỳ trang web nào trước khi đi ngủ, Swapfell Papyrus sẽ đảm bảo bạn cảm thấy an toàn

Nguyễn Hải Băng
Xem chi tiết
Aki Tsuki
18 tháng 11 2016 lúc 20:45

1) Ta có hình vẽ sau:


A B C D 1 2 1 2

Vì AB // CD nên \(\widehat{A_1}\) = \(\widehat{C_1}\) (so le trong)

AD // BC nên \(\widehat{A_2}\) = \(\widehat{C_2}\) ( so le trong)

Xét ΔABC và ΔCDA có:

\(\widehat{A_1}\) = \(\widehat{C_1}\) (cm trên)

AC: Cạnh chung

\(\widehat{A_2}\) = \(\widehat{C_2}\) (cm trên)

\(\Rightarrow\) ΔABC = ΔCDA (g.c.g) (đpcm)

2) Chứng minh tương tự ta có: ΔCDA = ABC (g.c.g)

\(\Rightarrow\) AB = CD ( 2 cạnh tương ứng) (đpcm)

3) Mình sửa lại chỗ AE = AC là AE = AB đó nha, bn ghi nhầm đề!!!

Ta có hình vẽ sau:

A B C F E 1 2

Xét ΔABC và ΔAFE có:

AE = AB (gt)

\(\widehat{A_1}\) = \(\widehat{A_2}\) (đối đỉnh)

AF = AC (gt)

\(\Rightarrow\) ΔABC = ΔAFE(c.g.c) (đpcm)

Nguyễn Huy Tú
18 tháng 11 2016 lúc 20:41

Bạn áp dụng trường hợp bằng nhau cạnh - góc - cạnh của tam giác rồi chứng minh nha