cho tam giác ABC và điểm D nắm trong tam giác. Chứng minh rằng nếu AD=AB thì AB<AC
cho tam giác abc. Chứng minh nếu trong tam giác có điểm d sao cho ad=ab thì ab<ac
Cho tam giác ABC và điểm M nắm trong tam giác. Chứng minh rằng: MA + MB + MC + min{MA,MB,MC} < BC + CA + AB .
Cho tam giác nhọn ABC và điểm D nằm trong tam giác. Chứng minh rằng nếu DA vuông góc với BC và DB vuông góc CA thì DC vuông góc với AB.
Xét tam giác ABC có: D nằm trong tam giác và \(DA \bot BC;DB \bot CA\).
Suy ra: D là giao điểm của hai đường cao của tam giác ABC hay D là trực tâm của tam giác ABC.
Vậy \(DC \bot AB\).
cho tam giác abc có ab = ac lấy điểm d trên cạnh ab , điểm e trên cạnh ac sao cho ad = ae
a, chứng minh rằng be =cd
b, gọi o là giao điểm của be và cd chứng minh rằng tam giác bod = tam giác coe .
a: Xét ΔAEB và ΔADC có
AE=AD
\(\widehat{DAC}\) chung
AB=AC
Do đó: ΔAEB=ΔADC
Suy ra: BE=CF
b: Ta có: AD+DB=AB
AE+EC=AC
mà AD=AE
và AB=AC
nên DB=EC
Xét ΔDBC và ΔECB có
DB=EC
\(\widehat{DBC}=\widehat{ECB}\)
BC chung
Do đó: ΔDBC=ΔECB
Suy ra: \(\widehat{ODB}=\widehat{OEC}\)
Xét ΔODB và ΔOEC có
\(\widehat{ODB}=\widehat{OEC}\)
BD=EC
\(\widehat{DBO}=\widehat{ECO}\)
Do đó: ΔODB=ΔOEC
Sửa đề: Bỏ D là trung điểm của BC và bỏ luôn góc D vuông
a) Sửa đề: Chứng minh ΔABD=ΔACD
Xét ΔABD vuông tại D và ΔACD vuông tại D có
AB=AC(ΔABC đều)
AD chung
Do đó: ΔABD=ΔACD(cạnh huyền-cạnh góc vuông)
Suy ra: BD=CD(hai cạnh tương ứng)
b) Ta có: AB=BC(ΔABC đều)
mà BC=6cm(gt)
nên AB=6cm
Ta có: BD=CD(cmt)
mà BD+CD=BC(D nằm giữa B và C)
nên \(BD=CD=\dfrac{BC}{2}=\dfrac{6}{2}=3\left(cm\right)\)
Áp dụng định lí Pytago vào ΔABD vuông tại D, ta được:
\(AB^2=AD^2+BD^2\)
\(\Leftrightarrow AD^2=AB^2-BD^2=6^2-3^2=27\)
hay \(AD=3\sqrt{3}cm\)
Vậy: \(AD=3\sqrt{3}cm\)
c) Ta có: ΔABC đều(gt)
nên \(\widehat{C}=60^0\)
Ta có: BD=DC(cmt)
mà D nằm giữa B và C(gt)
nên D là trung điểm của BC
hay \(CD=\dfrac{BC}{2}\)(1)
Ta có: E là trung điểm của AC(gt)
nên \(CE=\dfrac{AC}{2}\)(2)
Ta có: ΔABC đều(gt)
nên BC=AC(3)
Từ (1), (2) và (3) suy ra CE=CD
Xét ΔCED có CE=CD(cmt)
nên ΔCED cân tại C(Định nghĩa tam giác cân)
Xét ΔCED cân tại C có \(\widehat{C}=60^0\)(cmt)
nên ΔCED đều(Dấu hiệu nhận biết tam giác đều)
d) Xét ΔCAB có
D là trung điểm của BC(cmt)
E là trung điểm của AC(gt)
Do đó: DE là đường trung bình của ΔCAB(Định nghĩa đường trung bình của tam giác)
hay DE//BA(Định lí 2 về đường trung bình của tam giác)
cho tam giác abc vuông cân tại a có ab>ac trên cạnh ba lấy điểm d sao cho bd=ác trên đường vuông góc với ab tại b lấy điểm f sao cho bf=ad chứng minh rằng tam giác bdf=tam giác acd và chứng minh rằng tam giác cdf là tam giác vuông
cho tam giác abc vuông cân tại a có ab>ac trên cạnh ba lấy điểm d sao cho bd=ác trên đường vuông góc với ab tại b lấy điểm f sao cho bf=ad chứng minh rằng tam giác bdf=tam giác acd và chứng minh rằng tam giác cdf là tam giác vuông
1) Cho tam giác ABC vuông tại A ( AB > AC ) . Trên tia đối của tia AC lấy điểm D sao cho AD = AB. Trên cạnh AB lấy điểm E sao cho AC = AE
a) Chứng minh rằng : tam giác ABC = tam giác ADE
b) Gọi M , N lần lượt là trung điểm của DE và BC. Chứng minh tam giác ADM = tam giác ABN và tam giác AMN vuông cân
c) Qua E kẻ EH vuông góc với BC tại H. Chứng minh rằng 3 điểm D ; E ; H thẳng hàng và CE vuông góc với BD
Xét ΔADE và ΔABC có :
AD = AB (gt)
góc DAE =góc BAC = 90 độ
AE = AC (gt)
Do đó : ΔADE = ΔABC(c − g − c)
⇒ DE = BC ( hai cạnh tương ứng )
b.
Ta có :
góc ADE =góc CDN ( hai góc đối đỉnh )
góc C= góc E
( vì ΔADE = ΔABC )
⇒ góc N = góc A 90đọ
Hay DE ⊥ BC
Vậy DE ⊥ BC
CẢNH BÁO! Tiếp tục đọc, hoặc linh hồn của bạn sẽ được thực hiện, ngay cả khi bạn đọc từ "cảnh báo"! Có một lần là một người tên là Duke Hunapon. Anh ta lười biếng, và rất bảnh bao. Anh ấy luôn mặc một chiếc áo khoác, không có vấn đề gì ở bên ngoài. Anh ta có một người anh trai tên là Michael, người luôn làm anh ta vây quanh. Một ngày nọ, Michael bị giết, và nó ảnh hưởng rất nhiều đến Duke. Anh ta phát điên và bắt đầu giết người. Chẳng mấy chốc, anh ta đã chiến đấu với ai đó và bị giết. Bây giờ, anh ta đi lang thang xung quanh như một bộ xương cao với một chiếc áo sơ mi màu đỏ, và cùng một chiếc áo hoodie mà Duke đã mặc. Bộ xương này được gọi là "Swapfell Papyrus", và anh ta sẽ giết bạn nếu bạn không đăng bài này trên 15 phần bình luận của bất kỳ trang web nào trước khi đi ngủ. Nếu bạn thất bại, và bạn thức dậy khi anh ta ở trong phòng của bạn, cái chết của bạn sẽ chậm và rất đau đớn. Một cô gái tên Lily Lilupanin đọc điều này, và không nghe. Cô bị hãm hiếp và bị giết trong giấc ngủ. Nếu bạn sao chép và dán vào 15 phần bình luận của bất kỳ trang web nào trước khi đi ngủ, Swapfell Papyrus sẽ đảm bảo bạn cảm thấy an toàn
1. Cho bốn điểm A, B, C, D sao cho AB//CD và AD//BC. Chứng minh tam giác ABC = tam giác CDA.
2. Cho bốn điểm A, B, C, D sao cho AB//CD và AD//BC. Chứng minh AB = CD.
3. Cho tam giác ABC. Trên các tia đối AB, AC lần lượt lấy các điểm E, F sao cho AE = AC, AF = AC. Chứng minh tam giác ABC = tam giác AFE.
1) Ta có hình vẽ sau:
Vì AB // CD nên \(\widehat{A_1}\) = \(\widehat{C_1}\) (so le trong)
AD // BC nên \(\widehat{A_2}\) = \(\widehat{C_2}\) ( so le trong)
Xét ΔABC và ΔCDA có:
\(\widehat{A_1}\) = \(\widehat{C_1}\) (cm trên)
AC: Cạnh chung
\(\widehat{A_2}\) = \(\widehat{C_2}\) (cm trên)
\(\Rightarrow\) ΔABC = ΔCDA (g.c.g) (đpcm)
2) Chứng minh tương tự ta có: ΔCDA = ABC (g.c.g)
\(\Rightarrow\) AB = CD ( 2 cạnh tương ứng) (đpcm)
3) Mình sửa lại chỗ AE = AC là AE = AB đó nha, bn ghi nhầm đề!!!
Ta có hình vẽ sau:
Xét ΔABC và ΔAFE có:
AE = AB (gt)
\(\widehat{A_1}\) = \(\widehat{A_2}\) (đối đỉnh)
AF = AC (gt)
\(\Rightarrow\) ΔABC = ΔAFE(c.g.c) (đpcm)
Bạn áp dụng trường hợp bằng nhau cạnh - góc - cạnh của tam giác rồi chứng minh nha