Xét tam giác ABC có: D nằm trong tam giác và \(DA \bot BC;DB \bot CA\).
Suy ra: D là giao điểm của hai đường cao của tam giác ABC hay D là trực tâm của tam giác ABC.
Vậy \(DC \bot AB\).
Xét tam giác ABC có: D nằm trong tam giác và \(DA \bot BC;DB \bot CA\).
Suy ra: D là giao điểm của hai đường cao của tam giác ABC hay D là trực tâm của tam giác ABC.
Vậy \(DC \bot AB\).
Cho tam giác ABC. Vẽ trực tâm H của tam giác ABC và nhận xét vị trí của nó trong các trường hợp sau:
a) Tam giác ABC nhọn;
b) Tam giác ABC vuông tại A;
c) Tam giác ABC có góc A tù.
Cho tam giác ABC có H là trực tâm, H không trùng với đỉnh nào của tam giác. Nêu một tính chất của cặp đường thẳng:
a) AH và BC; b) BH và CA; c) CH và AB.
Cho tam giác ABC có G là trọng tâm, H là trực tâm, I là giao điểm của ba đường phân giác, O là giao điểm của ba đường trung trực. Chứng minh rằng:
a) Nếu tam giác ABC đều thì bốn điểm G, H, I, O trùng nhau;
b) Nếu tam giác ABC có hai điểm trong bốn điểm G, H, I, O trùng nhau thì tam giác ABC là tam giác đều.
Trong Hình 139, cho biết AB // CD, AD // BC; H, K lần lượt là trực tâm các tam giác ABC và ACD. Chứng minh AK // CH và AH // CK.
Cho tam giác ABC vuông tại A. Hãy đọc tên đường cao đi qua B, đường cao đi qua C.
Cho tam giác ABC có trực tâm H cũng là trọng tâm của tam giác. Chứng minh tam giác ABC đều.
Cho tam giác đều ABC có trọng tâm là G. Chứng minh G cũng là trực tâm của tam giác ABC.
Cho tam giác nhọn ABC. Hai đường cao BE và CF cắt nhau tại H, \(\widehat {HCA} = 25^\circ \). Tính \(\widehat {BAC}\)và \(\widehat {HBA}\).
Cho tam giác ABC. Gọi M, N, P lần lượt là hình chiếu của A, B, C trên các đường thẳng BC, CA, AB (Hình 132).
Em có nhận xét gì về ba đường thẳng AM, BN, CP?