Bài 13. Tính chất ba đường cao của tam giác

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Quoc Tran Anh Le

Cho tam giác đều ABC có trọng tâm là G. Chứng minh G cũng là trực tâm của tam giác ABC.

Kiều Sơn Tùng
17 tháng 9 2023 lúc 22:09

Tam giác ABC đều nên AB = AC = BC.

G là trọng tâm tam giác ABC nên AD, BE, CF là các đường trung tuyến trong tam giác.

Suy ra: AF = BF = AE = CE = BD = CD.

Xét tam giác ADB và tam giác ADC có:

     AB = AC (tam giác ABC đều);

     AD chung

     BD = CD (là trung điểm của đoạn thẳng BC).

Vậy \(\Delta ADB = \Delta ADC\)(c.c.c) nên \(\widehat {ADB} = \widehat {ADC}\) ( 2 góc tương ứng).

Mà ba điểm B, D, C thẳng hàng nên \(\widehat {ADB} = \widehat {ADC} = 90^\circ \)hay \(AD \bot BC\). (1)

Tương tự ta có:

\(\widehat {AEB} = \widehat {CEB} = 90^\circ \) hay\(BE \bot AC\). (2)

\(\widehat {AFC} = \widehat {BFC} = 90^\circ \) hay\(CF \bot AB\). (3)

Từ (1), (2), (3) suy ra G là giao điểm của ba đường cao AD, BE, CF.

Vậy G cũng là trực tâm của tam giác ABC.


Các câu hỏi tương tự
Quoc Tran Anh Le
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết