Tìm giá trị của:
x3+9x2y+27xy2+27y3
biết \(\frac{1}{3}\)x+y+1=0
Bài 2: đưa về dạng lập phương của 1 tổng, 1 hiệu.
1, x3-9x2y+27xy2-27y3
2, 27x3-9x2y+xy2-1/27y3
3, x6-3x4y+3xy2-y3
1, x3-9x2y+27xy2-27y3=(x-3y)3
2, 27x3-9x2y+xy2-\(\dfrac{1}{27}\)y3=(3x-\(\dfrac{1}{3}\)y)3
3)x6-3x4y+3xy2-y3=(x2-y)3
1) \(x^3-9x^2y+27xy^2-27y^3=\left(x-3y\right)^3\)
2) \(27x^3-9x^2y+xy^2-\dfrac{1}{27}y^3=\left(3x-\dfrac{1}{3}y\right)^3\)
3) \(x^6-3x^4y+3xy^2-y^3=\left(x^2-y\right)^3\)
Cho x,y,z > 0 và thỏa mãn x+y+z=3. Tìm giá trị nhỏ nhất của:
\(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}+\frac{1}{\sqrt{z}}\)
Ta có:
\(3=x+y+z\ge3\sqrt[3]{xyz}\)
\(\Leftrightarrow xyz\le1\)
Ta lại có:
\(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}+\frac{1}{\sqrt{z}}\ge\frac{3}{\sqrt[6]{xyz}}\ge\frac{3}{1}=3\)
Cho M =3x^2y+4x^2y+\(\frac{1}{2}\)+x^2y
1)tìm cặp số nguyên (x;y) để M=240
2)chứng minh M và 2x^2y^3 cung dấu với mọi x;y khác 0
3) C/M M và -2x^4 khác dấu với mọi x khác 0
4) C/M 2x^4y^3 và -4xy ít nhất có một đơn thức có giá trị âm với mọi x,y khác 0
5)C/M M-2x^4y^3 và -4xy ít nhất có 1 đơn thức có giá trị dương với mọi x,y khác 0
6)tìm số h để kx^2y^2 và 2My nhận giá trị
a) âm với mọi x,y khác 0
b) dương vói mọi x,y khác 0
7) tìm giá trị nhỏ nhất của M+2
8) tìm giá trị lớn nhất của -M+2
9)tìm số tự nhiên A biêt \(\frac{15}{6}x^2y+\frac{15}{12}x^2y+\frac{15}{30}x^2y+.......+\frac{15}{a-\left(a+1\right)}\)
Tìm giá trị nhỏ nhất của biểu thức :
\(P=\frac{\sqrt{1+x^3+y^3}}{xy}+\frac{\sqrt{1+y^3+z^3}}{yz}+\frac{\sqrt{1+z^3+x^3}}{zx}\)
Trên miền \(D=\left\{\left(x;y;z\right):x>0;y>0;z>0;xyz=1\right\}\)
Áp dụng bất đẳng thức Cô - si, ta có :
\(P\ge\frac{\sqrt{3\sqrt[3]{x^3y^3}}}{xy}+\frac{\sqrt{3\sqrt[3]{y^3z^3}}}{yz}+\frac{\sqrt{3\sqrt[3]{z^3x^3}}}{zx}\)
\(\Rightarrow P\ge\sqrt{\frac{3}{xy}}+\sqrt{\frac{3}{yz}}+\sqrt{\frac{3}{zx}}\) (1)
Lại theo bất đẳng thức Cô si thì :
\(\sqrt{\frac{3}{xy}}+\sqrt{\frac{3}{yz}}+\sqrt{\frac{3}{zx}}\ge3\sqrt[3]{\sqrt{\frac{27}{\left(xyz\right)^2}}}\) (2)
Vì \(xyz=1\) nên ta có :
\(\sqrt{\frac{3}{xy}}+\sqrt{\frac{3}{yz}}+\sqrt{\frac{3}{zx}}\ge3\sqrt{3}\)
Khi \(x=y=z=1\Rightarrow P=3\sqrt{3}\)
Vậy giá trị nhỏ nhất của \(P=3\sqrt{3}\)
cho x, y > 0 ; x3+y3+6xy<8
Tìm giá trị nhỏ nất của P =\(\frac{1}{x}+\frac{1}{y}\)
B1: Chứng minh rằng:Nếu 10x2+5xy-3y2=0 thì \(\frac{2x-y}{3x-y}+\frac{5y-x}{3x+y}=-3\)
B2:Tìm giá trị nguyên của x sao cho:\(\frac{1}{x}+\frac{1}{x+2}+\frac{x-2}{x^2+2x}\)nhận giá trị nguyên
\(A=\frac{2x-y}{3x-y}+\frac{5y-x}{3x+y}\)
\(=\frac{\left(2x-y\right)\left(3x+y\right)+\left(5y-x\right)\left(3x-y\right)}{\left(3x-y\right)\left(3x+y\right)}\)
\(=\frac{3x^2+15xy-6y^2}{9x^2-y^2}\)
\(=\frac{3\left(x^2+5xy-2y^2\right)}{9x^2-y^2}\)
\(=\frac{3\left(10x^2+5xy-3y^2-9x^2+y^2\right)}{9x^2-y^2}\)
\(=-\frac{3\left(9x^2-y^2\right)}{9x^2-y^2}\)
= - 3 (đpcm)
~~~
\(A=\frac{1}{x}+\frac{1}{x+2}+\frac{x-2}{x^2+2x}\)
\(=\frac{x+2+x+x-2}{x^2+2x}\)
\(=\frac{3x}{x\left(x+2\right)}\)
\(=\frac{3}{x+2}\)
\(A\in Z\)
\(\Leftrightarrow3⋮x+2\)
\(\Leftrightarrow x+2\in\text{Ư}\left(3\right)=\left\{-3:-1;1;3\right\}\)
\(\Leftrightarrow x\in\left\{-5;-3;-1;1\right\}\)
Cho biểu thức :
\(A=\frac{4xy}{y^2-x^2}:\left(\frac{1}{y^2+2xy+x^2}-\frac{x^3+y^3}{x^4-y^4}\right)\left(x\ne\pm y;y\ne0\right)\)
a) Rút gọn A và tìm giá trị x,y để A = 0
b ) tìm giá trị x,y nguyên thỏa mãn \(A=x^3+xy+x+y+1\)
\(A=\frac{4xy}{y^2-x^2}:\left(\frac{1}{y^2+2xy+x^2}-\frac{x^3+y^3}{x^4-y^4}\right)\left(x\ne\pm y;y\ne0\right)\)
\(\Leftrightarrow A=\frac{4xy}{\left(y^2-x^2\right)\left(y^2+x^2\right)}:\left(\frac{1}{\left(y+x\right)^2}-\frac{x^3+y^3}{\left(x^2-y^2\right)\left(x^2+y^2\right)}\right)\)
\(\left(x-\frac{1}{3}\right)\left(y-\frac{1}{2}\right)\left(z-5\right)=0\)Hãy tìm số giá trị (x;y;z)
Biết x+3=y+2=z+3
Cho x,y > 0, xy=2. Tìm giá trị nhỏ nhất của
\(P=\frac{1}{x}+\frac{2}{y}+\frac{3}{2x+y}\)
Cho x,y > 0 và x+y=0, tìm giá trị của N = \(\frac{1}{x}+\frac{1}{y}\)