15-2x-x2=0
Bài 3: Tìm x
1) ( x + 5)2 = (x + 3)( x – 7)
2) (x + 2)(x2 -2x + 4) = 15 + x(x2 +2)
3) x2 + 6x = -9
4) x3 - 9x2 = 27 – 27x
5) (2x + 1)2 - 4(x + 2)2 = 9
6) –x2 - 2x +15 = 0
\(1,\Leftrightarrow x^2+10x+25=x^2-4x-21\\ \Leftrightarrow14x=-46\\ \Leftrightarrow x=-\dfrac{23}{7}\\ 2,\Leftrightarrow x^3+8=15+x^3+2x\\ \Leftrightarrow2x=-7\Leftrightarrow x=-\dfrac{7}{2}\\ 3,\Leftrightarrow\left(x+3\right)^2=0\\ \Leftrightarrow x=-3\\ 4,\Leftrightarrow x^3-9x^2+27x-27=0\\ \Leftrightarrow\left(x-3\right)^3=0\\ \Leftrightarrow x-3=0\Leftrightarrow x=3\\ 5,\Leftrightarrow4x^2+4x+1-4x^2-16x-16=9\\ \Leftrightarrow-12x=24\Leftrightarrow x=-2\\ 6,\Leftrightarrow x^2-3x+5x-15=0\\ \Leftrightarrow\left(x-3\right)\left(x+5\right)=0\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-5\end{matrix}\right.\)
x2 - 2x -15=0
=x^2-5x+3x-15
=x(x-5)+3(x-5)
=(x-5)(x+3)
\(x^2-2x-15=0\)
\(\Leftrightarrow x^2-5x+3x-15=0\)
\(\Leftrightarrow x\left(x-5\right)+3\left(x-5\right)=0\)
\(\Leftrightarrow\left(x-5\right)\left(x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-5=0\\x+3=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-3\end{matrix}\right.\)
Vậy: \(S=\left\{5;-3\right\}\)
a,(x-y)2 - 2x - 15=0
b,x2 - 2x - 35=0
b: x^2-2x-35=0
=>(x-7)(x+5)=0
=>x=7 hoặc x=-5
a: Sửa đề; (x-1)^2-2x-15=0
=>x^2-2x+1-2x-15=0
=>x^2-4x-14=0
=>\(x=2\pm3\sqrt{2}\)
`a, (x-y)^2 -2x-15=0`
`<=> (x-y)^2 = 2x +15`
`<=>x-y = +-sqrt(2x+15)`.
`<=> y= x +-sqrt(2x+15)`.
Chứng minh:
a. x2 + xy + y2 + 1 > 0 với mọi x, y
b. x2 + 4y2 + z2 - 2x - 6z + 8y + 15 > 0 Với mọi x, y, z
⇒(x−1)^2+4(y+1)^2+(z−3)^2≥0
x^2+4y^2+z^2-2x-6z+8y+15
=x^2+4y^2+z^2-2x-6z+8y+1+1+4+9
=(x^2-2x+1)+(4y^2+8y+4)+(z^2-6z+9)+1
=(x-1)^2+4(y+1)^2+(z-3^)2+1
Ta thấy:(x−1)^2≥0
4(y+1)^2≥0
(z−3)^ 2≥0
{(x−1)^24(y+1)^2(z−3)^2≥0
⇒(x−1)^2+4(y+1)^2+(z−3)^2≥0
⇒(x−1)2+4(y+1)2+(z−3)2+1≥0+1=1>0
\(x^2+xy+y^2+1.=x^2+2.x.\dfrac{y}{2}+\left(\dfrac{y}{2}\right)^2+\dfrac{3}{4}y^2+1.\\ =\left(x+\dfrac{y}{2}\right)^2+\dfrac{3}{4}y^2+1>0\forall x;y\in R.\\ \Rightarrow x^2+xy+y^2+10\forall x;y\in R.\)
Bài 11: Tìm x biết:
a) (x+2)(x2-2x+4) - x(x2+2) =15
b) (x+3)2 –x(3x+1)2 +(2x+1)(4x2 -2x+1) =28
c) (x2-1)3 - (x4+x2+1)(x2-1) = 0
d) (x-2)3 –(x-3)(x2 + 3x+9) +6(x+1)2 = 49
Giải phương trình:
a)x2-11x+15=-15
b)2x-3x+10=x
c)x3-4=4
d)x4+x3-x2-x=0
\(a.x^2-11x+15=-15.\Leftrightarrow x^2-11x+30=0.\)
\(\Leftrightarrow\left(x-6\right)\left(x-5\right)=0.\Leftrightarrow\left[{}\begin{matrix}x=6.\\x=5.\end{matrix}\right.\)
\(b.2x-3x+10=x.\Leftrightarrow-2x+10=0.\Leftrightarrow x=5.\)
\(c.x^3-4=4.\Leftrightarrow x^3=8.\Leftrightarrow x^3=2^3.\Rightarrow x=2.\)
\(d.x^4+x^3-x^2-x=0.\Leftrightarrow x^2\left(x^2+x\right)-\left(x^2+x\right)=0.\Leftrightarrow\left(x^2-1\right)\left(x^2+x\right)=0.\)
\(\Leftrightarrow\left(x-1\right)\left(x+1\right)x\left(x+1\right)=0.\Leftrightarrow\left(x-1\right)\left(x+1\right)^2x=0.\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0.\\x+1=0.\\x=0.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=1.\\x=-1.\\x=0.\end{matrix}\right.\)
Gọi x 1 , x 2 là hai nghiệm phân biệt của phương trình 4 x − 2 x + 3 + 15 = 0. Khi đó x 1 + x 2 bằng
A. log 2 15
B. 3
C. log 3 2 + log 5 2
D. log 2 3 5
Đáp án A
P T ⇔ 2 x 2 − 8 2 x + 15 = 0 ⇔ 2 x = 3 2 x = 5 ⇔ x = log 2 3 x = log 2 5 ⇒ x 1 + x 2 = log 2 3 + log 2 5 = log 2 15
giải phương trình tích :
a) ( 2x - 10 ) ( 5x + 25) = 0
b) ( x + 15) ( x - 2 ) = 0
c) x2 - 7x =0
a: (2x-10)(5x+25)=0
=>2x-10=0 hoặc 5x+25=0
=>x=5 hoặc x=-5
b: (x+15)(x-2)=0
=>x+15=0 hoặc x-2=0
=>x=-15 hoặc x=2
c: =>x(x-7)=0
=>x=0 hoặc x=7
a, (2x - 10) (5x + 25) = 0
⇒ 2x - 10 = 0 hoặc 5x + 25 = 0
⇒ x = 5 hoặc x = -5
b, (x + 15) (x - 2) = 0
⇒ x + 15 = 0 hoặc x - 2 = 0
⇒ x = -15 hoặc x = 2
c: =>x(x-7)=0
=>x=0 hoặc x=7
a) -2x - (-17)= 9 b) 11 + (15 – x) = 1
c) 53 – 7x = 57 : 55 |
b) 11 + (15 – x) = 1
d) 29 +9.x2 = 110
e) (2x-4).(3-x) = 0
g) 2x + 1 chia hết cho x -2
b: =>15-x=-10
hay x=25
a: =>-2x+17=9
=>-2x=-8
hay x=4
d: \(\Leftrightarrow9x^2=81\)
hay \(x\in\left\{3;-3\right\}\)
e: \(\Leftrightarrow\left[{}\begin{matrix}2x-4=0\\3-x=0\end{matrix}\right.\Leftrightarrow x\in\left\{2;3\right\}\)
Kết quả của phép tính (x − 5)(x + 3) là:
A. x 2 − 15
B. x 2 − 8x − 15
C. x 2 + 2x − 15
D. x 2 − 2x − 15
Chọn D.
(x − 5)(x + 3) = x(x + 3) – 5( x + 3) = x 2 + 3x - 5x - 15 = x 2 − 2x − 15