trong các tập sau, tập nào là con tập nào?
Trong các tập sau, tập nào là tập con của tập nào?
A = { 1; 2; 3 } B = { \(x\in N\) | x < 4 }
C = ( 0; \(+\infty\) ) D = { \(x\in R\) | \(2x^2-7x+3=0\) }
Ta có:
\(A=\left\{1;2;3\right\}\)
\(B=\left\{x\in N|x< 4\right\}\)
\(\Rightarrow B=\left\{...;0;1;2;3\right\}\)
\(C=\left\{0;+\infty\right\}\)
\(\Rightarrow\text{C}\text{ }=\left\{x>0;x\in R\right\}\)
\(D=\left\{x\in R|2x^2-7x+3=0\right\}\)
\(\Rightarrow D=\left\{3;\dfrac{1}{2}\right\}\)
Nên A là con của B và C; D là con của C
cho tập hợp M=1,2,3,4,5,6,trong các tập hợp sau,tập hợp nào là tập hợp con của M
Cho tập hợp X = {1;2;4;7}. Trong các tập hợp sau, tập hợp nào là tập hợp con của tập hợp X?
a, {1;7}
b, {1;5}
c, {2;5}
d, {3;7}
Trong các tập hợp sau, tập hợp nào có 32 tập hợp con?
A. A = {-2; 3; 5; 12}.
B. B = {-1; 0; 2; 4; 9}.
C. C = {-5; 0; 1; 4}.
D. D = {-3; -1; 0; 3; 6; 11}.
Đáp án: B
Số tập hợp con của tập hợp có n phần tử là 2n = 32 ⇒ n = 5. Chỉ có tập hợp B là tập hợp có 5 phần tử.
Trong các tập sau, tập hợp nào có đúng một tập hợp con?
A. ∅
B. {a}
C. {a;b}
D. ∅ ; A với A là một tập hợp khác rỗng
2 Cho tập hợp M={1;2;3}. Trong các tập hợp sau tập hợp nào là tập hợp con của M
M1={0;1} B. M2={0;2} C. M3={3;4} D. M4={1;3}
Trong các tập hợp sau đây, tập nào là tập rỗng:
a/A={x ∈ Z | |x| < 1}
b/B={x ∈ R | x2 - x + 1= 0}
c/C={x ∈ N | x2 + 7x + 12 = 0}
Cho tập hợp A ={1;2;3}
a/ Viết tất cả các tập hợp con gồm 2 phần tử của tập hợp A
b/ Viết tất cả các tập hợp con của tập hợp A
Tìm tất cả các tập X sao cho{1;3} ⊂ X ⊂{1;2;3;4;5}
Tập hợp C rỗng vì \(x^2+7x+12=0\Leftrightarrow x\in\left\{-3;-4\right\}\notin N\)
\(a,\left\{1;2\right\};\left\{1;3\right\};\left\{2;3\right\}\\ b,\left\{1\right\};\left\{2\right\};\left\{3\right\};\left\{1;2\right\};\left\{1;3\right\};\left\{2;3\right\};\left\{1;2;3\right\}\)
\(X=\left\{1;3\right\}\\ X=\left\{1;2;3\right\}\\ X=\left\{1;3;4\right\}\\ X=\left\{1;3;5\right\}\\ X=\left\{1;2;3;4\right\}\\ X=\left\{1;2;3;5\right\}\\ X=\left\{1;3;4;5\right\}\\ X=\left\{1;2;3;4;5\right\}\)
Trong mỗi cặp tập hợp sau đây, tập hợp nào là tập con của tập hợp còn lại? Chúng có bằng nhau không?
a) \(A = \{ - \sqrt 3 ;\sqrt 3 \} \) và \(B = \{ x \in \mathbb{R}|{x^2} - 3 = 0\} \)
b) C là tập hợp các tam giác đều và D là tập hợp các tam giác cân;
c) \(E = \{ x \in \mathbb{N}|x\) là ước của 12\(\} \) và \(F = \{ x \in \mathbb{N}|x\) là ước của 24\(\} .\)
Viết tất cả các tập con của tập hợp \(A = \{ a;b\} .\)
a) A là tập con củ B vì:
\( - \sqrt 3 \in \mathbb{R}\) thỏa mãn \({\left( { - \sqrt 3 } \right)^2} - 3 = 0\), nên \( - \sqrt 3 \in B\)
\(\sqrt 3 \in \mathbb{R}\) thỏa mãn \({\left( {\sqrt 3 } \right)^2} - 3 = 0\), nên \(\sqrt 3 \in B\)
Lại có: \({x^2} - 3 = 0 \Leftrightarrow x = \pm \sqrt 3 \) nên \(B = \{ - \sqrt 3 ;\sqrt 3 \} \).
Vậy A = B.
b) C là tập hợp con của D vì: Mỗi tam giác đều đều là một tam giác cân.
\(C \ne D\) vì có nhiều tam giác cân không là tam giác đều, chẳng hạn: tam giác vuông cân.
c) E là tập con của F vì \(24\; \vdots \;12\) nên các ước nguyên dương của 12 đều là ước nguyên dương của 24.
\(E \ne F\) vì \(24 \in F\)nhưng \(24 \notin E\)
Trong mỗi cặp tập hợp sau đây, tập hợp nào là tập con của tập còn lại? Chúng có bằng nhau không?
a) \(A = \{ x \in \mathbb{N}|\;x < 2\} \) và \(B = \{ x \in \mathbb{R}|\;{x^2} - x = 0\} \)
b) C là tập hợp các hình thoi và D là tập hợp các hình vuông
c) \(E = ( - 1;1]\) và \(F = ( - \infty ;2]\)
a) \(A = \{ x \in \mathbb{N}|\;x < 2\} = \{ 0;1\} \) và \(B = \{ x \in \mathbb{R}|\;{x^2} - x = 0\} = \{ 0;1\} \)
Vậy A = B, A là tập con của tập B và ngược lại.
b) D là tập hợp con của C vì: Mỗi hình vuông đều là một hình thoi đặc biệt: hình thoi có một góc vuông.
\(C \ne D\) vì có nhiều hình thoi không là hình vuông, chẳng hạn:
c) \(E = ( - 1;1] = \left\{ {x \in \mathbb{R}|\; - 1 < x \le 1} \right\}\) và \(F = ( - \infty ;2] = \left\{ {x \in \mathbb{R}|\;x \le 2} \right\}\)
E là tập con của F vì \( - 1 < x \le 1 \Rightarrow x \le 2\) .
\(E \ne F\) vì \( - 3 \in F\)nhưng \( - 3 \notin E\)