Cho Q=\(\dfrac{1}{x-\sqrt{x-2}+2017}\)
Tìm giá trị lơn nhất của biểu thức Q.
Cho hai biểu thức:
P = \(\dfrac{\sqrt{x}-1}{\sqrt{x}+2}\) và Q = \(\dfrac{\sqrt{x}+1}{\sqrt{x}}-\dfrac{2-\sqrt{x}}{x+2\sqrt{x}}\) với \(x>0\)
Biết biểu thức Q sau khi thu gọn được Q = \(\dfrac{\sqrt{x}+4}{\sqrt{x}+2}\)
c) Tìm giá trị nhỏ nhất của biểu thức \(A=P:Q\) với điều kiện \(x\ge4\)
\(A=P:Q=\dfrac{\sqrt{x}-1}{\sqrt{x}+2}:\dfrac{\sqrt{x}+4}{\sqrt{x}+2}\)
\(=\dfrac{\sqrt{x}-1}{\sqrt{x}+4}=1+\dfrac{-5}{\sqrt{x}+4}\)
Điều kiện : \(x\ge4\Rightarrow\sqrt{x}+4\ge4\Rightarrow-\dfrac{5}{\sqrt{x}+4}\le-\dfrac{5}{4}\Rightarrow\dfrac{5}{\sqrt{x}+4}\ge\dfrac{5}{4}\)
Dấu ''='' xảy ra \(\Leftrightarrow x=0\)
Vậy \(min_A=\dfrac{5}{4}\Leftrightarrow x=0\)
Cho hai biểu thức \(P=\dfrac{x+3}{\sqrt{x}-2}\) và \(Q=\dfrac{\sqrt{x}-1}{\sqrt{x}+2}+\dfrac{5\sqrt{x}-2}{x-4}\) với \(x\ge0,\text{ }x\ne4\).
a) Tính giá trị của $P$ khi $x = 9$.
b) Rút gọn biểu thức $Q$.
c) Tìm giá trị của $x$ để biểu thức \(\dfrac{P}{Q}\) đạt giá trị nhỏ nhất.
a/ \(P=12\)
b/ \(Q=\frac{\sqrt{x}}{\sqrt{x}-2}\)
c/ Ta có:
\(\frac{P}{Q}=\frac{\frac{x+3}{\sqrt{x}-2}}{\frac{\sqrt{x}}{\sqrt{x}-2}}=\frac{x+3}{\sqrt{x}}\ge\frac{2\sqrt{3x}}{\sqrt{x}}=2\sqrt{3}\)
Dấu = xảy ra khi x = 3 (thỏa tất cả các điều kiện )
a. Thay x = 3 vào biểu thức P ta được :
\(p=\frac{x+3}{\sqrt{x}-2}=\frac{9+3}{\sqrt{9}-2}=12\)
b, \(Q=\frac{\sqrt{x}-1}{\sqrt{x}+2}+\frac{5\sqrt{x}-2}{x-4}\)
\(=\frac{\sqrt{x}-1}{\sqrt{x}+2}+\frac{5\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
\(=\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)+5\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
\(=\frac{x-3\sqrt{x}+2+5\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
\(=\frac{x+2\sqrt{x}}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
\(=\frac{\sqrt{x}\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
\(=\frac{\sqrt{x}}{\sqrt{x}-2}\)
c, Ta có :
\(\frac{P}{Q}=\frac{\frac{x+3}{\sqrt{x}-2}}{\frac{\sqrt{x}}{\sqrt{x}-2}}=\frac{x+3}{\sqrt{x}}\ge\frac{2\sqrt{3x}}{\sqrt{x}}=2\sqrt{3}\)
Vậy GTNN \(\frac{P}{Q}=2\sqrt{3}\) khi và chỉ khi \(x=3\)
b) Q=√x−1√x+2 +5√x−2x−4
.
c) Ta có PQ =x+3√x−2 :√x√x−2 =x+3√x
⇒PQ =x+3√x =√x+3√x .
Áp dụng bất đẳng thức Cô-si ta có: √x+3√x ≥2.√√x.3√x =2√3.
Vậy , đẳng thức xảy ra .
Câu hỏi thuộc chủ đề: Rút gọn biểu thức chứa căn bậc hai
o l m . v n
Cho biểu thức Q = \(\dfrac{3x+\sqrt{9x}-3}{x+\sqrt{x}-2}-\dfrac{\sqrt{x}+1}{\sqrt{x}+2}+\dfrac{\sqrt{x}-2}{1-\sqrt{x}}\)
a) rút gọn Q
b) Tính giá trị của Q khi x = \(4+2\sqrt{3}\)
c) Tìm các giá trị của x để Q = 3
d) Tìm các giá trị cảu x để Q > \(\dfrac{1}{2}\)
e) Tìm x \(\in\) Z để Q = Z
a: \(Q=\dfrac{3x+3\sqrt{x}-3-x+1-x+4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)
\(=\dfrac{x-3\sqrt{x}+2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}=\dfrac{\sqrt{x}-2}{\sqrt{x}+2}\)
b: Khi x=4+2căn 3 thì \(Q=\dfrac{\sqrt{3}+1-2}{\sqrt{3}+1+2}=\dfrac{-3+2\sqrt{3}}{3}\)
c: Q=3
=>3căn x+6=căn x-2
=>2căn x=-8(loại)
d: Q>1/2
=>Q-1/2>0
=>\(\dfrac{\sqrt{x}-2}{\sqrt{x}+2}-\dfrac{1}{2}>0\)
=>2căn x-4-căn x-2>0
=>căn x>6
=>x>36
d: Q nguyên
=>căn x+2-4 chia hết cho căn x+2
=>căn x+2 thuộc Ư(-4)
=>căn x+2 thuộc {2;4}
=>x=0 hoặc x=4(nhận)
Cho biểu thức Q= \(\sqrt{\left(1-3x\right)\left(x+\dfrac{1}{2}\right)}\)
a, Với giá trị nào của x thì biểu thức có nghĩa?
b, Tìm giá trị lớn nhất của Q
a) Ta có:
\(Q=\sqrt{\left(1-3x\right)\left(x+\dfrac{1}{2}\right)}\) Q có nghĩa khi:
\(\left(1-3x\right)\left(x+\dfrac{1}{2}\right)\ge0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}1-3x\ge0\\x+\dfrac{1}{2}\ge0\end{matrix}\right.\\\left\{{}\begin{matrix}1-3x\le0\\x+\dfrac{1}{2}\le\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}3x\le1\\x\ge-\dfrac{1}{2}\end{matrix}\right.\\\left\{{}\begin{matrix}3x\ge1\\x\le-\dfrac{1}{2}\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\le\dfrac{1}{3}\\x\ge-\dfrac{1}{2}\end{matrix}\right.\\\left\{{}\begin{matrix}x\ge\dfrac{1}{3}\\x\le-\dfrac{1}{2}\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}-\dfrac{1}{2}\le x\le\dfrac{1}{3}\\x\in\varnothing\end{matrix}\right.\)
\(\Leftrightarrow-\dfrac{1}{2}\le x\le\dfrac{1}{3}\)
b) Ta có: \(Q=\sqrt{\left(1-3x\right)\left(x+\dfrac{1}{2}\right)}\)
\(Q=\sqrt{x+\dfrac{1}{2}-3x^2-\dfrac{3}{2}x}\)
\(Q=\sqrt{-\left(3x^2+\dfrac{1}{2}x-\dfrac{1}{2}\right)}\)
\(Q=\sqrt{-3\left(x^2+\dfrac{1}{6}x-\dfrac{1}{6}\right)}\)
\(Q=\sqrt{-3\left(x^2+2\cdot\dfrac{1}{12}\cdot x+\dfrac{1}{144}-\dfrac{25}{144}\right)}\)
\(Q=\sqrt{-3\left(x+\dfrac{1}{12}\right)^2+\dfrac{25}{144}}\)
Mà: \(Q=\sqrt{-3\left(x+\dfrac{1}{12}\right)^2+\dfrac{25}{144}}\le\sqrt{\dfrac{25}{144}}=\dfrac{5}{12}\)
Dấu "=" xảy ra khi:
\(\Leftrightarrow-3\left(x+\dfrac{1}{12}\right)^2=0\)
\(\Leftrightarrow x+\dfrac{1}{12}=0\)
\(\Leftrightarrow x=-\dfrac{1}{12}\)
Vậy: \(Q_{max}=\dfrac{5}{12}.khi.x=-\dfrac{1}{12}\)
Cho biểu thức \(Q=\dfrac{x^2-\sqrt{x}}{x+\sqrt{x}+1}-\dfrac{2x+\sqrt{x}}{\sqrt{x}}+\dfrac{2x-2}{\sqrt{x}-1}\)
a, Rút gọn rồi tìm giá trị nhỏ nhất của Q
b, Tìm các số nguyên x để \(\dfrac{3Q}{\sqrt{x}}\) nhận giá trị nguyên
\(Q=\frac{\sqrt{x}\cdot\left(\sqrt{x}-1\right)\cdot\left(x+\sqrt{x}+1\right)}{x+\sqrt{x}+1}-\frac{\sqrt{x}\cdot\left(2\sqrt{x}+1\right)}{\sqrt{x}}+\frac{2\left(\sqrt{x}-1\right)\cdot\left(\sqrt{x}-1\right)}{\sqrt{x}-1}\)
\(Q=x-\sqrt{x}-2\sqrt{x}-1+2\sqrt{x}+2\)
\(Q=x+1\)
Không thể tìm được GTLN hay GTNN của Q.
b)
\(\frac{3x+3}{\sqrt{x}}=3\sqrt{x}+\frac{3}{\sqrt{x}}\)
Để \(\frac{3Q}{\sqrt{x}}\) nguyên thì \(\frac{3}{\sqrt{x}}\)nguyên hay \(\sqrt{x}\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
Vì \(\sqrt{x}\)dương nên \(\sqrt{x}\in\left\{1;3\right\}\)
Vậy x=1, x=9 là các giá trị cần tìm
Cho biểu thức P=\(\left(\dfrac{x+\sqrt{x}}{x\sqrt{x}+x+\sqrt{x}+1}+\dfrac{1}{x+1}\right):\dfrac{\sqrt{x}-1}{x+1}\)
a, Rút gọn biểu thức P
b, Tính giá trị của P với \(x=\dfrac{2+\sqrt{3}}{2}\)
c, Với x>1, tìm giá trị nhỏ nhất của P.\(\sqrt{x}\)
\(P=\left(\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(x+1\right)}+\frac{1}{x+1}\right).\frac{x+1}{\sqrt{x}-1}\)ĐK x>=0 x khác -1
=\(\frac{\sqrt{x}+1}{x+1}.\frac{x+1}{\sqrt{x}-1}=\frac{\sqrt{x}+1}{\sqrt{x}-1}\)
b/ x =\(\frac{2+\sqrt{3}}{2}=\frac{4+2\sqrt{3}}{4}=\frac{3+2\sqrt{3}+1}{4}=\frac{\left(\sqrt{3}+1\right)^2}{4}\)
\(\Rightarrow\sqrt{x}=\frac{\sqrt{3}+1}{2}\)
Em thay vào tính nhé!
c) với x>1
A=\(\frac{\sqrt{x}+1}{\sqrt{x}-1}.\sqrt{x}=\frac{x+\sqrt{x}}{\sqrt{x}-1}=\sqrt{x}+2+\frac{2}{\sqrt{x}-1}=\sqrt{x}-1+\frac{2}{\sqrt{x}-1}+3\)
Áp dụng bất đẳng thức Cosi
A\(\ge2\sqrt{2}+3\)
Xét dấu bằng xảy ra ....
Câu 6: Cho biểu thức Q = \(\left(\dfrac{\sqrt{x}-1}{\sqrt{x}-2}-\dfrac{\sqrt{x}+2}{\sqrt{x}+1}\right):\left(\dfrac{1}{\sqrt{x}}-\dfrac{1}{\sqrt{x}+1}\right)\)
a) Tìm x để biểu thức Q xác định và rút gọn biểu thức Q
b) Tìm các giá trị của x để biểu thức Q có giá trị âm
a) ĐKXĐ: \(x>0;x\ne4\)
\(Q=\left(\dfrac{\sqrt{x}-1}{\sqrt{x}-2}-\dfrac{\sqrt{x}+2}{\sqrt{x}+1}\right):\left(\dfrac{1}{\sqrt{x}}-\dfrac{1}{\sqrt{x}+1}\right)\)
\(=\left[\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}-\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}\right]:\dfrac{\sqrt{x}+1-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+1\right)}\)
\(=\dfrac{x-1-\left(x-4\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}:\dfrac{1}{\sqrt{x}\left(\sqrt{x}+1\right)}\)
\(=\dfrac{3}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}\cdot\sqrt{x}\left(\sqrt{x}+1\right)\)
\(=\dfrac{3\sqrt{x}}{\sqrt{x}-2}\)
b) Để biểu thức \(Q\) có giá trị âm thì \(\dfrac{3\sqrt{x}}{\sqrt{x}-2}< 0\)
\(\Rightarrow\sqrt{x}-2< 0\) (vì \(3\sqrt{x}>0\forall x>0;x\ne4\))
\(\Leftrightarrow\sqrt{x}< 2\Leftrightarrow0\le x< 4\)
Kết hợp với điều kiện xác định của \(x\), ta được: \(0< x< 4\)
\(\text{#}\mathit{Toru}\)
cho biểu thức A=\(\dfrac{2x+1}{x.\sqrt{x}-1}-\dfrac{\sqrt{x}}{x+\sqrt{x}+1}\) và B=\(\dfrac{1+x.\sqrt{x}}{1+\sqrt{x}}-\sqrt{x}\)
a, tính giá trị của B khi x = \(4-2.\sqrt{3}\)
b, rút gọn biểu thức P=A.B
c,tính giá trị nhỏ nhất của Q=\(\sqrt{x}+\dfrac{1}{P}\)với (x>1)
\(a,B=\dfrac{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{1+\sqrt{x}}-\sqrt{x}\\ B=x-\sqrt{x}+1-\sqrt{x}=\left(\sqrt{x}-1\right)^2\)
Mà \(x=4-2\sqrt{3}=\left(\sqrt{3}-1\right)^2\)
\(\Rightarrow B=\left(\sqrt{3}-1-1\right)^2=\left(\sqrt{3}-2\right)^2=7-4\sqrt{3}\)
\(b,P=AB=\dfrac{2x+1-x+\sqrt{x}}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\cdot\left(\sqrt{x}-1\right)^2\\ P=\dfrac{\left(x+\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{x+\sqrt{x}+1}=\sqrt{x}-1\\ c,Q=\sqrt{x}+\dfrac{1}{P}=\sqrt{x}+\dfrac{1}{\sqrt{x}-1}\\ Q=\sqrt{x}-1+\dfrac{1}{\sqrt{x}-1}+1\ge2\sqrt{1}+1=3\\ Q_{min}=3\Leftrightarrow\left(\sqrt{x}-1\right)^2=1\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}-1=1\\1-\sqrt{x}=1\end{matrix}\right.\Leftrightarrow\sqrt{x}=2\left(x>1\Leftrightarrow\right)x=4\left(tm\right)\)
a: \(B=\left(\sqrt{x}-1\right)^2=\left(\sqrt{3}-2\right)^2=7-4\sqrt{3}\)
b: \(A=\dfrac{2x+1-x+\sqrt{x}}{x\sqrt{x}-1}\cdot\left(\sqrt{x}-1\right)^2=\sqrt{x}-1\)
Cho biểu thức: Q = \(\dfrac{\sqrt{x}+2}{\sqrt{x}-3}-\dfrac{\sqrt{x}+1}{\sqrt{x}-2}-3\dfrac{\sqrt{x}-1}{x-5\sqrt{x}+6}\).
a) Tìm điều kiện xác định và rút gọn Q.
b) Tìm các giá trị của x để Q < -1.
c) Tìm các giá trị của x \(\in\) Z sao cho 2Q \(\in\) Z.
a, đk: \(x\ge0,x\ne9,x\ne4\)
\(Q=\dfrac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)-\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)-3\sqrt{x}+3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)
\(=\dfrac{x-4-x+3\sqrt{x}-\sqrt{x}+3-3\sqrt{x}+3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)
\(=\dfrac{2-\sqrt{x}}{-\left(\sqrt{x}-3\right)\left(2-\sqrt{x}\right)}=\dfrac{-1}{\sqrt{x}-3}\)
b,\(Q< -1=>\dfrac{-1}{\sqrt{x}-3}+1< 0< =>\dfrac{-1+\sqrt{x}-3}{\sqrt{x}-3}< 0\)
\(< =>\dfrac{\sqrt{x}-4}{\sqrt{x}-3}< 0\)
\(=>\left\{{}\begin{matrix}\left[{}\begin{matrix}\sqrt{x}-4>0\\\sqrt{x}-3< 0\end{matrix}\right.\\\left[{}\begin{matrix}\sqrt{x}-4< 0\\\sqrt{x}-3>0\end{matrix}\right.\end{matrix}\right.\)\(< =>\left[{}\begin{matrix}\left\{{}\begin{matrix}x>16\\x< 9\end{matrix}\right.\\\left\{{}\begin{matrix}x< 16\\x>9\end{matrix}\right.\end{matrix}\right.\)\(< =>9< x< 16\)
c, \(=>2Q=\dfrac{-2}{\sqrt{x}-3}=1+\dfrac{1}{\sqrt{x}-3}\in Z\)
\(< =>\sqrt{x}-3\inƯ\left(1\right)=\left\{\pm1\right\}\)\(=>x\in\left\{16;4\right\}\)(loại 4)
=>x=16
a) \(Q=\dfrac{\sqrt{x}+2}{\sqrt{x}-3}-\dfrac{\sqrt{x}+1}{\sqrt{x}-2}-3\dfrac{\sqrt{x}-1}{x-5\sqrt{x}+6}\)
Ta có \(x-5\sqrt{x}+6=\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)\)
ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\\sqrt{x}-3>0\\\sqrt{x}-2>0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\x>9\\x>2\end{matrix}\right.\) \(\Leftrightarrow x>9\)
\(Q=\dfrac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}-\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}-3\dfrac{\sqrt{x}-1}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)
\(=\dfrac{\left(x-4\right)-\left(x-2\sqrt{x}-3\right)-\left(3\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\) \(=\dfrac{-\sqrt{x}+2}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\) \(=\dfrac{-\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\) \(=\dfrac{-1}{\left(\sqrt{x}-3\right)}=\dfrac{1}{3-\sqrt{x}}\)
b) \(Q< -1\Leftrightarrow\dfrac{1}{3-\sqrt{x}}< -1\) \(\Leftrightarrow\dfrac{1}{3-\sqrt{x}}+1< 0\) \(\Leftrightarrow\dfrac{4-\sqrt{x}}{3-\sqrt{x}}< 0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}4-\sqrt{x}>0\\3-\sqrt{x}< 0\end{matrix}\right.\\\left\{{}\begin{matrix}4-\sqrt{x}< 0\\3-\sqrt{x}>0\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x< 16\\x>9\end{matrix}\right.\\\left\{{}\begin{matrix}x>16\\x< 9\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow9< x< 16\)
Vậy để \(Q< -1\) thì \(S=\left\{x/9< x< 16\right\}\)
c) \(2Q\in Z\Leftrightarrow\dfrac{2}{3-\sqrt{x}}\in Z\)
\(\Rightarrow3-\sqrt{x}\inƯ\left(2\right)\)\(\Leftrightarrow\left\{{}\begin{matrix}3-\sqrt{x}=2\\3-\sqrt{x}=-2\\3-\sqrt{x}=1\\3-\sqrt{x}=-1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=1\\x=25\\x=4\\x=16\end{matrix}\right.\)
Kết hợp với ĐKXĐ,ta có để \(2Q\in Z\) thì \(x\in\left\{16;25\right\}\)
a) ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\notin\left\{9;4\right\}\end{matrix}\right.\)
Ta có: \(Q=\dfrac{\sqrt{x}+2}{\sqrt{x}-3}-\dfrac{\sqrt{x}+1}{\sqrt{x}-2}-\dfrac{3\sqrt{x}-3}{x-5\sqrt{x}+6}\)
\(=\dfrac{x-4-x+2\sqrt{x}+2-3\sqrt{x}+3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)
\(=\dfrac{-\sqrt{x}+2}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)
\(=\dfrac{-1}{\sqrt{x}-3}\)
c) Để 2Q là số nguyên thì \(-2⋮\sqrt{x}-3\)
\(\Leftrightarrow\sqrt{x}-3\in\left\{1;-1;2;-2\right\}\)
\(\Leftrightarrow\sqrt{x}\in\left\{4;2;5;1\right\}\)
\(\Leftrightarrow x\in\left\{16;25;1\right\}\)