Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
phuong thuy hoang1012
Xem chi tiết
phuong thuy hoang1012
20 tháng 12 2020 lúc 15:04

giúp mik vs các bạn ơi

Nguyễn Lê Phước Thịnh
8 tháng 10 2022 lúc 10:57

a: Gọi M là trung điểm của CD

=>ΔCED nội tiếp đường tròn đường kính CD có M là tâm

=>MD=ME

=>ΔMDE cân tại M

=>góc MED=góc MDE

Xét ΔABD có 

AH vừa là đường cao, vừa là đường trung tuyến

nên ΔABD cân tại A

=>AH là phân giác của góc BAD

=>góc BAH=góc DAH

Xét tứ giác AHDE có

góc AHD+góc AED=180 độ

nên AHDE là tứ giác nội tiếp

=>góc DAH=góc DEH

=>góc DEH=góc BAH=góc C

=>góc MEH=góc C+góc CDE=90 độ

=>HE là tiếp tuyến của (M)

b: \(HB=DH=\dfrac{AB^2}{BC}=\dfrac{64}{17}\left(cm\right)\)

CD=BC-2x64/17=161/17(cm)

EM=161/17:2=161/34(cm)

MH=MD+DH=BC/2=8,5cm

=>\(HE=\sqrt{MH^2-EM^2}=\dfrac{120}{17}\left(cm\right)\)

Kim Tae Huynh  123
Xem chi tiết
Nguyễn Lê Phước Thịnh
8 tháng 10 2022 lúc 10:57

a: Gọi M là trung điểm của CD

=>ΔCED nội tiếp đường tròn đường kính CD có M là tâm

=>MD=ME

=>ΔMDE cân tại M

=>góc MED=góc MDE

Xét ΔABD có 

AH vừa là đường cao, vừa là đường trung tuyến

nên ΔABD cân tại A

=>AH là phân giác của góc BAD

=>góc BAH=góc DAH

Xét tứ giác AHDE có

góc AHD+góc AED=180 độ

nên AHDE là tứ giác nội tiếp

=>góc DAH=góc DEH

=>góc DEH=góc BAH=góc C

=>góc MEH=góc C+góc CDE=90 độ

=>HE là tiếp tuyến của (M)

b: \(HB=DH=\dfrac{AB^2}{BC}=\dfrac{64}{17}\left(cm\right)\)

CD=BC-2x64/17=161/17(cm)

EM=161/17:2=161/34(cm)

MH=MD+DH=BC/2=8,5cm

=>\(HE=\sqrt{MH^2-EM^2}=\dfrac{120}{17}\left(cm\right)\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
24 tháng 3 2019 lúc 10:08

a, Gọi O là trung điểm CD

Từ giả thiết suy ra tam giác ABD và tam giác ODE đều

=> DE = DH = DO = 1 4 BC

=>  H E O ^ = 90 0

=> HE là tiếp tuyến của đường tròn đường kính CD

b, HE = 4 3

Nguyễn Lê Phước Thịnh
8 tháng 10 2022 lúc 10:57

a: Gọi M là trung điểm của CD

=>ΔCED nội tiếp đường tròn đường kính CD có M là tâm

=>MD=ME

=>ΔMDE cân tại M

=>góc MED=góc MDE

Xét ΔABD có 

AH vừa là đường cao, vừa là đường trung tuyến

nên ΔABD cân tại A

=>AH là phân giác của góc BAD

=>góc BAH=góc DAH

Xét tứ giác AHDE có

góc AHD+góc AED=180 độ

nên AHDE là tứ giác nội tiếp

=>góc DAH=góc DEH

=>góc DEH=góc BAH=góc C

=>góc MEH=góc C+góc CDE=90 độ

=>HE là tiếp tuyến của (M)

b: \(HB=DH=\dfrac{AB^2}{BC}=\dfrac{64}{17}\left(cm\right)\)

CD=BC-2x64/17=161/17(cm)

EM=161/17:2=161/34(cm)

MH=MD+DH=BC/2=8,5cm

=>\(HE=\sqrt{MH^2-EM^2}=\dfrac{120}{17}\left(cm\right)\)

Cầm Dương
Xem chi tiết
Nguyễn Lê Phước Thịnh
8 tháng 10 2022 lúc 10:59

a: Gọi M là trung điểm của CD

=>ΔCED nội tiếp đường tròn đường kính CD có M là tâm

=>MD=ME

=>ΔMDE cân tại M

=>góc MED=góc MDE

Xét ΔABD có 

AH vừa là đường cao, vừa là đường trung tuyến

nên ΔABD cân tại A

=>AH là phân giác của góc BAD

=>góc BAH=góc DAH

Xét tứ giác AHDE có

góc AHD+góc AED=180 độ

nên AHDE là tứ giác nội tiếp

=>góc DAH=góc DEH

=>góc DEH=góc BAH=góc C

=>góc MEH=góc C+góc CDE=90 độ

=>HE là tiếp tuyến của (M)

b: \(HB=DH=\dfrac{AB^2}{BC}=\dfrac{64}{17}\left(cm\right)\)

CD=BC-2x64/17=161/17(cm)

EM=161/17:2=161/34(cm)

MH=MD+DH=BC/2=8,5cm

=>\(HE=\sqrt{MH^2-EM^2}=\dfrac{120}{17}\left(cm\right)\)

Cô Hoàng Huyền
Xem chi tiết
Nhật Nam
22 tháng 8 2021 lúc 16:33

a) Gọi O là trung điểm của CD.

Do E nằm trên đường tròn (O) nên ^DEC=90o hay DEAC.

Thế thì DE//AB.

Gọi M là trung điểm AE, xét hình thang ABDE có: H là trung điểm BD và M là trung điểm AE nên HM là đường trung bình của hình thang.

Vậy nên HM//AB//DE hay HMAE.

Suy ra tam giác HAE cân tại H hay ^HEA=^HAE.

Tam giác OEC cân tại O nên ^OEC=^OCE.

Từ đó ta có: ^HEA+^OEC=^HAE+^OCE=90o.

Suy ra ^OEH=180o90o=90o.
Vậy nên HE là tiếp tuyến của đường tròn (O).
b) Xét tam giác ABC vuông tại A, áp dụng định lý Pi-ta-go, ta có:

BC=AB2+AC2=17(cm)

Do tam giác HAE cân tại H nên:

HE = AH = (AB*AC)/BC=120/17

Khách vãng lai đã xóa
Phương Vy
22 tháng 8 2021 lúc 20:51

a) Gọi O là trung điểm của CD.

Do E nằm trên đường tròn (O) nên \widehat{DEC}=90^o hay DE\perp AC.

Thế thì DE//AB.

Gọi M là trung điểm AE, xét hình thang ABDE có: H là trung điểm BD và M là trung điểm AE nên HM là đường trung bình của hình thang.

Vậy nên HM//AB//DE hay HM\perp AE.

Suy ra tam giác HAE cân tại H hay \widehat{HEA}=\widehat{HAE}.

Tam giác OEC cân tại O nên \widehat{OEC}=\widehat{OCE}.

Từ đó ta có: \widehat{HEA}+\widehat{OEC}=\widehat{HAE}+\widehat{OCE}=90^o.

Suy ra \widehat{OEH}=180^o-90^o=90^o.
Vậy nên HE là tiếp tuyến của đường tròn (O).
b) Xét tam giác ABC vuông tại A, áp dụng định lý Pi-ta-go, ta có:

BC=\sqrt{AB^2+AC^2}=17\left(cm\right)

Do tam giác HAE cân tại H nên:

HE = AH = \dfrac{AB.AC}{BC}=\dfrac{120}{17}.

Khách vãng lai đã xóa
Nguyễn Thị Linh
17 tháng 11 2021 lúc 9:58

a) Gọi O là trung điểm của CD.

Do E nằm trên đường tròn (O) nên \widehat{DEC}=90^o hay DE\perp AC.

--> DE//AB.

Gọi M là trung điểm AE, xét hình thang ABDE có: H là trung điểm BD và M là trung điểm AE nên HM là đường trung bình của hình thang.

Vậy nên HM//AB//DE hay HM\perp AE.

--> tam giác HAE cân tại H hay \widehat{HEA}=\widehat{HAE}.

Tam giác OEC cân tại O nên \widehat{OEC}=\widehat{OCE}.

Có: \widehat{HEA}+\widehat{OEC}=\widehat{HAE}+\widehat{OCE}=90^o.

--> \widehat{OEH}=180^o-90^o=90^o.
Vậy nên HE là tiếp tuyến của đường tròn (O).
b) Xét tam giác ABC vuông tại A, áp dụng định lý Pi-ta-go, ta có:

BC=\sqrt{AB^2+AC^2}=17\left(cm\right)

Do tam giác HAE cân tại H nên:

HE = AH = \dfrac{AB.AC}{BC}=\dfrac{120}{17}.

Khách vãng lai đã xóa
Người Qua Đường
Xem chi tiết
Nguyễn Lê Phước Thịnh
8 tháng 10 2022 lúc 10:57

a: Gọi M là trung điểm của CD

=>ΔCED nội tiếp đường tròn đường kính CD có M là tâm

=>MD=ME

=>ΔMDE cân tại M

=>góc MED=góc MDE

Xét ΔABD có 

AH vừa là đường cao, vừa là đường trung tuyến

nên ΔABD cân tại A

=>AH là phân giác của góc BAD

=>góc BAH=góc DAH

Xét tứ giác AHDE có

góc AHD+góc AED=180 độ

nên AHDE là tứ giác nội tiếp

=>góc DAH=góc DEH

=>góc DEH=góc BAH=góc C

=>góc MEH=góc C+góc CDE=90 độ

=>HE là tiếp tuyến của (M)

b: \(HB=DH=\dfrac{AB^2}{BC}=\dfrac{64}{17}\left(cm\right)\)

CD=BC-2x64/17=161/17(cm)

EM=161/17:2=161/34(cm)

MH=MD+DH=BC/2=8,5cm

=>\(HE=\sqrt{MH^2-EM^2}=\dfrac{120}{17}\left(cm\right)\)

Trịnh Thu Hằng
Xem chi tiết
[柠檬]๛Čɦαŋɦ ČŠツ
23 tháng 9 2020 lúc 20:25

a) E nằm trên đường tròn đường kính CD

=> Tam giác CDE vuông tại E

=> DE // AB

Gọi M là trung điểm của AE

HM là đường trung bình của hình thang ABDE

=> HM // AB => \(HM\perp AB\)

=> Tam giác AHE cân tại H => \(\widehat{AEH}=\widehat{EAH}\)

Tam giác COE cân tại O => \(\widehat{OEC}=\widehat{OCE}\)

=> \(\widehat{OEC}+\widehat{AEH}=\widehat{OCE}+\widehat{EAH}=90^o\)

=> \(HE\perp OE\)=> Đpcm 

Khách vãng lai đã xóa
[柠檬]๛Čɦαŋɦ ČŠツ
23 tháng 9 2020 lúc 20:27

b) Tam giác ABC vuông tại A 

=> \(BC^2=AB^2+AC^2=289\)

=> BC = 17 

Tam giác ABC vuông tại A, đường cao AH

=> AB . AC = AH . BC 

=> \(HE=AH=\frac{120}{17}\)

Khách vãng lai đã xóa
Nguyễn Trung Dũng
Xem chi tiết
Nguyễn Lê Phước Thịnh
6 tháng 12 2023 lúc 20:31

Gọi M là trung điểm của CD

=>M là tâm của đường tròn đường kính CD

=>E thuộc (M)

Xét (M) có

ΔCED nội tiếp

CD là đường kính

Do đó: ΔCED vuông tại E

=>DE\(\perp\)EC tại E

=>DE\(\perp\)AC tại E

Xét ΔABD có

AH là đường cao

AH là đường trung tuyến

Do đó: ΔABD cân tại A

TA có: ΔABD cân tại A

mà AH là đường cao

nên AH là phân giác của góc BAD

=>\(\widehat{BAH}=\widehat{DAH}\)

Xét tứ giác AHDE có

\(\widehat{AHD}+\widehat{AED}=90^0+90^0=180^0\)

=>AHDE là tứ giác nội tiếp

=>\(\widehat{DEH}=\widehat{DAH}\)

mà \(\widehat{DAH}=\widehat{BAH}\)

nên \(\widehat{DEH}=\widehat{BAH}\)

mà \(\widehat{BAH}=\widehat{C}\left(=90^0-\widehat{ABC}\right)\)

nên \(\widehat{DEH}=\widehat{C}\)

Ta có: ME=MD

=>ΔMED cân tại M

=>\(\widehat{MED}=\widehat{MDE}\)

=>\(\widehat{MED}=\widehat{CDE}\)

\(\widehat{HEM}=\widehat{HED}+\widehat{MED}\)

\(=\widehat{CDE}+\widehat{C}\)

\(=90^0\)

=>HE\(\perp\)EM tại E

Xét (M) có

ME là bán kính

HE\(\perp\)ME tại E

Do đó: HE là tiếp tuyến của (M)

Anh Quynh
Xem chi tiết
Anh Quynh
Xem chi tiết
Denni
24 tháng 9 2021 lúc 18:40

undefined