Cho a/b=b/c. Chứng minh rằng:
a^2+b^2/b^2+c^2=a/c (giải dài tí nha. hi hi!!)
Chứng minh các đẳng thức sau: (nhớ dùng các hằng đẳng thức 1,2,3,4 hoặc 5 nha)
1) a^3+b^3+c^3-abc= (a+b+c).(a^2+b^2+c^2-ab-bc-ca)
2) a(b+c)^2+b(c+a)^2+c(a+b)^2-4abc= (a+b).(b+c).(c+a)
3) Cho a+b+c=0. Chứng minh: a^3+b^3+c^3=3abc
Các bạn giải rõ cho mình tí, đừng làm tắt nhiều quá, cảm ơn. Ai nhanh tớ tích cho nha, làm từng câu cũng đc.
1) a3+b3+c3-3abc = (a+b)3-3ab(a+b)+c3-3abc
= (a+b+c)(a2+2ab+b2-ab-ac+c2) -3ab(a+b+c)
= (a+b+c)( a2+b2+c2-ab-bc-ca)
Vì a+b+c=0
=> a+b=-c
=> (a+b)3= (-c)3
=> a3+b3+3ab(a+b) = (-c)3
=> a3+b3+c3= 3abc
Cho a,b,c là độ dài ba cạnh của tam giác
Chứng minh rằng:a^2-b^2-c^2-2bc luôn dương
Bài toán này chỉ chứng minh được với điều kiện đó là tam giác vuông với 2 cạnh của góc vuông là a & b.
Lúc đó ta sẽ có:
a^2 + b^2 = c^2
Suy ra:
a^2 + b^2 - c^2 = 0 (1)
Đề bài là:
M = 4a^2b^2 – ( a^2+ b^2 – c^2)
Thay (1) vào:
M = 4a^2b^2 - 0
M = 4a^2b^2
M > 0 (hay M luôn dương).
Ta có \(a^2-b^2-c^2-2bc\)
\(=a^2-\left(b^2+2bc+c^2\right)\)
\(=a^2-\left(b+c\right)^2\)
Ta có \(a^2\ge0;\left(b+c\right)^2\ge0\)nên \(a^2-\left(b+c\right)^2\ge0\)
Khi đó hiệu trên luôn dương
Vậy....
Ta có a − b − c − 2bc = a − b + 2bc + c = a − b + c
Ta có a ≥ 0; b + c ≥ 0
nên a − b + c ≥ 0
Khi đó hiệu trên luôn dương
a/b+c + b/c+a + c/a+b =1 . Chứng minh rằng a^2/b+c + b^2/c+a + c^2/a+b =0
mọi người giúp tí nha
chứng minh rằng:a(b-c)(b+c-a)^2+c(a-b)(a+b-c)^2=b(a-c)(a+c-b)^2
Cho a, b, c > . Chứng minh rằng:
a, \(\dfrac{a^2}{b+c}+\dfrac{b^2}{c+a}+\dfrac{c^2}{a+b}\ge\dfrac{a+b+c}{2}\)
b, \(\dfrac{1}{a^2+bc}+\dfrac{1}{b^2+ac}+\dfrac{1}{c^2+ab}\le\dfrac{a+b+c}{2abc}\)
a.
Ta có: \(\dfrac{a^2}{b+c}+\dfrac{b+c}{4}\ge2\sqrt{\dfrac{a^2\left(b+c\right)}{4\left(b+c\right)}}=a\)
Tương tự: \(\dfrac{b^2}{c+a}+\dfrac{c+a}{4}\ge b\) ; \(\dfrac{c^2}{a+b}+\dfrac{a+b}{4}\ge c\)
Cộng vế:
\(\dfrac{a^2}{b+c}+\dfrac{b^2}{c+a}+\dfrac{c^2}{a+b}+\dfrac{a+b+c}{2}\ge a+b+c\)
\(\Leftrightarrow\dfrac{a^2}{b+c}+\dfrac{b^2}{c+a}+\dfrac{c^2}{a+b}\ge\dfrac{a+b+c}{2}\) (đpcm)
Dấu "=" xảy ra khi \(a=b=c\)
b.
Ta có:
\(a^2+bc\ge2\sqrt{a^2bc}=2\sqrt{ab.ac}\Rightarrow\dfrac{1}{a^2+bc}\le\dfrac{1}{2\sqrt{ab.ac}}\le\dfrac{1}{4}\left(\dfrac{1}{ab}+\dfrac{1}{ac}\right)\)
Tương tự: \(\dfrac{1}{b^2+ac}\le\dfrac{1}{4}\left(\dfrac{1}{ab}+\dfrac{1}{bc}\right)\) ; \(\dfrac{1}{c^2+ab}\le\dfrac{1}{4}\left(\dfrac{1}{ac}+\dfrac{1}{bc}\right)\)
Cộng vế với vế:
\(\dfrac{1}{a^2+bc}+\dfrac{1}{b^2+ac}+\dfrac{1}{c^2+ab}\le\dfrac{1}{2}\left(\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}\right)=\dfrac{a+b+c}{2abc}\)
Dấu "=" xảy ra khi \(a=b=c\)
Cho tam giác ABC. Chứng minh rằng:
a) Nếu góc A nhọn thì \({b^2} + {c^2} > {a^2}\)
b) Nếu góc A tù thì \({b^2} + {c^2} < {a^2}\)
c) Nếu góc A vuông thì \({b^2} + {c^2} = {a^2}\)
Theo định lí cos ta có: \({a^2} = {b^2} + {c^2} - 2bc\;\cos A\)
\( \Rightarrow {b^2} + {c^2} - {a^2} = 2bc\;\cos A\)(1)
a) Nếu góc A nhọn thì \(\cos A > 0\)
Từ (1), suy ra \({b^2} + {c^2} > {a^2}\)
b) Nếu góc A tù thì \(\cos A < 0\)
Từ (1), suy ra \({b^2} + {c^2} < {a^2}\)
c) Nếu góc A vuông thì \(\cos A = 0\)
Từ (1), suy ra \({b^2} + {c^2} = {a^2}\)
Mng ơi giúp em với ạ Cho ( I ; 6cm ) Gọi H là điểm ngoài đường tròn sao cho HI= 12cm. Kẻ 2 tiếp HM, HN (M, N là 2 tiếp điểm) Gọi Q=HI giao nhau MN. a) Chứng minh MN thuộc HT b) Tính QI c) Kẻ đường kính MA chứng minh NA//HI
a: Xét (O) có
HM,HN là tiếp tuyến
nên HM=HN
mà IM=IN
nên IH là trung trực của MN
=>IH vuông góc MN
b: QI=MI^2/IH=6^2/12=3cm
c: Xét (I) có
ΔMNA nội tiếp
MA là đường kính
Do đó: ΔMNA vuông tại N
=>NA vuông góc với NM
=>AN//HI
Cho a,b,c>0 thỏa mãn \(\dfrac{1}{a+2}+\dfrac{1}{b+2}+\dfrac{1}{c+2}\ge1\). Chứng minh rằng:
a+b+c\(\ge\)ab+bc+ca
\(\dfrac{1}{a+2}+\dfrac{1}{b+2}+\dfrac{1}{c+2}\ge1\Leftrightarrow\dfrac{2}{a+2}+\dfrac{2}{b+2}+\dfrac{2}{c+2}\ge2\)
\(\Leftrightarrow\dfrac{a}{a+2}+\dfrac{b}{b+2}+\dfrac{c}{c+2}\le1\)
\(\Rightarrow1\ge\dfrac{a^2}{a^2+2a}+\dfrac{b^2}{b^2+2b}+\dfrac{c^2}{c^2+2c}\ge\dfrac{\left(a+b+c\right)^2}{a^2+b^2+c^2+2\left(a+b+c\right)}\)
\(\Rightarrow a^2+b^2+c^2+2\left(a+b+c\right)\ge a^2+b^2+c^2+2\left(ab+bc+ca\right)\)
\(\Rightarrow\) đpcm