cho tam giác ABC, A=90độ, AH vuông góc với BC, AH=14, \(\dfrac{BH}{HC}=\dfrac{1}{4}\) .Tính BC
cho tam giác ABC (góc A =90độ)AH vuông góc với BC biết AB/AC=3/4 AH=9cm tính AB AC BC BH CH
Lời giải:
Vì $\frac{AB}{AC}=\frac{3}{4}$ nên đặt $AB=3a; AC=4a$ với $a>0$
Áp dụng hệ thức lượng trong tam giác vuông:
$\frac{1}{AB^2}+\frac{1}{AC^2}=\frac{1}{AH^2}$
$\frac{1}{(3a)^2}+\frac{1}{(4a)^2}=\frac{1}{81}$
$\frac{25}{144a^2}=\frac{1}{81}$
$a=3,75$ (cm)
Do đó:
$AB=3a=11,25$ (cm)
$AC=4a=15$ (cm)
$BC=\frac{AB.AC}{AH}=\frac{11,25.15}{9}=18,75$ (cm)
Áp dụng định lý Pitago:
$BH=\sqrt{AB^2-AH^2}=\sqrt{11,25^2-9^2}=6,75$ (cm)
$CH=BC-BH=18,75-6,75=12$ (cm)
Cho một tam giác ABC vuông tại A có \(\widehat{B}=\dfrac{1}{2}\widehat{C}\). Kẻ đường cao AH sao cho cạnh AH vuông góc với cạnh huyền BC tại H. Các hình chiếu của AB và AC trên BC lần lượt là BH và HC. Biết HC = 1,6cm.
a) Tính góc B và C, và các tỉ số lượng giác của chúng nó.
b*) Tính độ dài các cạnh BC, AB và AC.
Gợi ý: Sử dụng các hệ thức về tỉ số lượng giác của góc nhọn và một trong bốn hệ thức về cạnh góc vuông và đường cao trong tam giác vuông để tính.
c) Tính độ dài các cạnh AH và BH.
d) Hãy chứng minh rằng: Cả ba tam giác vuông ABC, HBA và HAC đồng dạng với nhau.
e*) Chứng minh rằng: \(\dfrac{\sin\widehat{HAC}}{\cos\widehat{HBA}}\div\dfrac{\tan\widehat{HAC}}{\cot\widehat{ABC}}=\dfrac{csc^2\widehat{ABC}}{sec^2\widehat{ABC}\cdot\cot\widehat{HBA}}\)
Gợi ý:
1. Secant - sec α nghịch đảo với cos α
2. Cosecant - csc α nghịch đảo với sin α
Tam giác ABC vuông tại A có đường cao AH= 4cm và \(\dfrac{BH}{HC}=\dfrac{1}{2}\) . Tính BC
Ta có: \(\dfrac{BH}{HC}=\dfrac{1}{2}\)
nên HC=2HB
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền AB, ta được:
\(AH^2=HB\cdot HC\)
\(\Leftrightarrow HB\cdot2HB=4^2=16\)
\(\Leftrightarrow HB^2=8\)
hay \(HB=2\sqrt{2}\left(cm\right)\)
\(\Leftrightarrow HC=2\cdot HB=2\cdot2\sqrt{2}=4\sqrt{2}\left(cm\right)\)
\(\Leftrightarrow HB+HC=2\sqrt{2}+4\sqrt{2}\)
hay \(BC=6\sqrt{2}\left(cm\right)\)
đề 1:
Cho tam giác ABC vuông tại A, AH vuông góc BC,AB=30cm,AH=24cm.
a)tính BH?BC?
b)tính các tỉ số lượng giác của các góc của tam giác AHB
đề 2
cho tam giác ABC vuông tại A, AH vuông góc BC , HB=4cm, HC=9cm
a)tính các cạnh tam giác ABC
b)tính các góc của tam giác ABC
CHo Tam giác ABC, góc A=90, AH vuông góc BC , BH=3,6cm ; HC=6,4cm. Tính BC, AB, AC, AH
Ta có: BC=BH+HC
nên BC=3,6+6,4
hay BC=10cm
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(\left\{{}\begin{matrix}AH^2=HB\cdot HC\\AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AH=4,8cm\\AB=6cm\\AC=8cm\end{matrix}\right.\)
BC=BH+HC=3,6+6,4=10CM
AB^2=BH.BC
=>AB=6CM
AC=\(\sqrt{BC^2-AB^2}=8CM\)
AH^2=BH.HC
=>AH=4,8CM
Cho tam giác ABC vuông tại A có đường cao AH chia cạnh huyền BC thành 2 đoạn: BH = 2 và HC = 6
a)tính AH,AB,AC
b)Trên AC lấy điểm K.Gọi D là hình chiếu của A trên BK
CMR: BD.BK=BH.BC
c)CMR:Sbhd=\(\dfrac{1}{4}\)bkc.cos bình góc ABD
a: Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC
nên \(\left\{{}\begin{matrix}AH^2=HB\cdot HC\\AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AH=2\sqrt{3}\left(cm\right)\\AB=4\left(cm\right)\\AC=4\sqrt{3}\left(cm\right)\end{matrix}\right.\)
Cho tam giác ABC vuông tại A có AB=15 cm AC=20cm. Vẽ AH vuông góc với BC tại H.
1,Chứng minh tam giác HBA và tam giác ABC đồng dạng. 2,Tính BC, AH.
3,Vẽ tia phân giác của góc BAH cắt BH tại D. Tính BH DH .
4, Trên cạnh HC lấy E sao cho HE =HA, qua E vẽ đường thẳng vuông góc với cạnh BC cắt AC tại M, qua C vẽ đường thẳng vuông góc với BC cắt tia phân giác của góc MEC tại F. Chứng minh H,M,F thẳng hàng
* Không cần làm ạ
Các bạn nhìn hình ảnh xem đây là dùng phương pháp gì để chứng minh thẳng hàng ạ ! ( mình chưa thấy có cái gì liên quan chỉ chứng minh được I trùng với M sao thẳng hàng được ạ )
Đọc câu cuối thì chắc là chứng minh phản chứng đêý ạ ( Ngu lí thuyết, chắc thế.)
Đại khái cái cách này là bạn gọi 1 trong 3,4 điểm cần cm thẳng hàng ý trùng 1 điểm bâts kì thuộc (hoặc chứng minh được) thuộc đoạn thẳng có 2 mút là 2 điểm cần chứng minh ấy. Rồi từ dữ kiện đề bài => 2 điểm trùng nhau => thẳng hàng. Cơ bản mình hiểu là vậyyy ..
sao FC lại song song me do cùng vuông góc hc được .CF vuông góc với tia phân giác góc MEC mà chỉ
tam giaác ABC vuông tại A, vẽ AH vuông góc BC, AB=6cm, BC=10cm
1. tính BH, AH 2.
CM \(\dfrac{BA.AC}{AB^{^2}}=\dfrac{AH}{BH}\)
tam giác abc (góc a =90 độ) góc B=55 độ, bc=6 cm. kẻ AH vuông góc với bc. tính AH, BH, HC
Trong tam giác vuông ABC:
\(cosB=\dfrac{AB}{BC}\Rightarrow AB=BC.cosB\)
Trong tam giác vuông ABH:
\(sinB=\dfrac{AH}{AB}\Rightarrow AH=AB.sinB=BC.sinB.cosB=6.sin55^0.cos55^0\approx2,8\left(cm\right)\)
\(cosB=\dfrac{BH}{AB}\Rightarrow BH=AB.cosB=BC.\left(cosB\right)^2=6.\left(cos55^0\right)^2\approx1,2\left(cm\right)\)
\(CH=BC-BH=6-1,2=4,8\left(cm\right)\)