Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lê Tài Bảo Châu
Xem chi tiết
tth_new
24 tháng 11 2019 lúc 16:05

1) Biến đồi tương đương:

\(\left(x^2+y^2\right)^2\ge8\left(x-y\right)^2\)

\(\Leftrightarrow\left(x^2+y^2\right)^2\ge8xy\left(x-y\right)^2\)

\(\Leftrightarrow\left(x^2-4xy+y^2\right)^2\ge0\)(đúng)

2) Sửa đề: \(\frac{1}{1+x^2}+\frac{1}{1+y^2}\ge\frac{2}{1+xy}\left(\text{với }xy\ge1\right)\)

\(\Leftrightarrow\frac{\left(x-y\right)^2\left(xy-1\right)}{\left(x^2+1\right)\left(y^2+1\right)\left(xy+1\right)}\ge0\) (đúng)

Khách vãng lai đã xóa
tth_new
24 tháng 11 2019 lúc 16:06

t ko xét dấu đẳng thức đâu, xấu lắm (ở bài 1), nên you tự xét:D

Khách vãng lai đã xóa
Vũ An Nhi xinh đẹp
Xem chi tiết
Người dùng hiện không tồ...
3 tháng 10 2018 lúc 20:04

ta có xy<=(x+y)^2/4 
cm 
<=> 4xy<=x^2+y^2+2xy 
<=> (x^2+y^2-2xy)>=0 
<=>(x-y)^2>=0 (dúng0) 
áp dụng xy<=(x+y)^2/4=2^2/4=1 
daứ = xảy ra là x=y=1 
cách đơn giản +dễ hiểu

Nguyen Huu Minh Thanh
Xem chi tiết
văn dũng
2 tháng 4 2020 lúc 17:09

đây lớp 6 mà

math class 6

chúc bạn học tốt

Khách vãng lai đã xóa
Hn . never die !
2 tháng 4 2020 lúc 19:41

đây là lớp 6 chứ đâu phải là lớp 5
 

Khách vãng lai đã xóa
Nguyen Huu Minh Thanh
3 tháng 4 2020 lúc 8:44

danh nham 8 thanh 5

Khách vãng lai đã xóa
Shinnôsuke
Xem chi tiết
Nguyễn MInh
Xem chi tiết
Nguyễn Đức Tài
10 tháng 10 2016 lúc 19:46

Ta có:x mũ 2 = y.z và y mũ 2=x.z

=>x mũ 2=yz.y mũ 2

=>x mũ 3.z=y mũ 3.z

=>x mũ 3=y mũ 3

=>x=y

Ta lại có: y=xz và x mũ 2=xy

=>y mũ 2.x.y=xy.z mũ 2

=>y mũ 3.x=z mũ 3.x

=>y mũ 3=z mũ 3

=>y=z

Vì x=y;y=z

=>x=y=z

Ly Phan
Xem chi tiết
Nguyễn Xuân Anh
16 tháng 11 2018 lúc 21:06

\(VT=x^3+y^3+z^3-3xyz.\)

\(=\left(x+y\right)^3-3xy\left(x+y\right)+z^3-3xyz\)

\(=\left(x+y+z\right)\left[\left(x+y\right)^2-z\left(x+y\right)+z^2\right]-3xy\left(x+y+z\right)\)

\(=\left(x+y+z\right)\left(x^2+2xy+y^2-xz-yz+z^2-3xy\right)\)

\(=\left(x+y+z\right)\left(x^2+y^2+z^2-xz-yz-xy\right)=VP\left(đpcm\right)\)

Nguyễn Nhật Tiên Tiên
Xem chi tiết
Trần Đăng Nhất
27 tháng 7 2017 lúc 20:28

1/ Chứng minh các hằng đẳng thức:

\(x^4 + y^4 +(x+y)^4 = x^4 + y^4 + x^4 + 4x^3y + 6x^2y^2 +4xy^3 + y^4 \\\ = 2x^4 +2y^4 +4x^2y^2+4x^3y+4xy^3+2x^2y^2\)

\(= 2(x^4 +y^4 +2x^2y^2)+4xy(x^2+y^2) + 2x^2y^2 \\\ = 2(x^2 + y^2)2 + 4xy(x^2 + y^2) +2x^2y^2\)

\(=2(x^2 +y^2) +2xy(x^2+ y^2) +x^2y^2) = 2(x^2 + y^2 + xy)^2 \\\ ⇒ đpcm\)

2/

Ta có : \([(5a - 3b) + 8c][(5a - 3b) - 8c] \)
\(= (5a - 3b)^2 - 64c^2\) (theo hiệu hai bình phương)
\(= 25a^2 - 30ab + 9b^2 - 64c^2\) (theo bình phương của hiệu)
\(= 25a^2 - 30ab + 9b^2 - 16(a^2 - b^2)\) (vì \(4c^2 = a^2 - b^2\))
\(= 9a^2 - 30ab + 25b^2 \)
\(= (3a - 5b)^2\) (theo bình phương của hiệu).

Nấm Chanel
Xem chi tiết
BW_P&A
8 tháng 5 2017 lúc 20:35

Ôn tập cuối năm phần số học

Cold Wind
8 tháng 5 2017 lúc 20:14

Ta có: \(x\ge1;y\ge1\)

\(\Rightarrow\left\{{}\begin{matrix}x\left(y-1\right)\ge0\\y\left(x-1\right)\ge0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}xy\ge x^2\\xy\ge y^2\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}1+xy\ge1+x^2\\1+xy\ge1+y^2\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{1+x^2}\ge\dfrac{1}{1+xy}\left(1\right)\\\dfrac{1}{1+y^2}\ge\dfrac{1}{1+xy}\left(2\right)\end{matrix}\right.\)

Cộng vế với vế (1) và (2) ta được : {cái bđt ở đầu bài chép xuống đây}

Phuong Anh Do
Xem chi tiết
missing you =
12 tháng 8 2021 lúc 11:55

\(=>2x^2+2y^2+2z^2=2xy+2yz+2xz\)

\(< =>2x^2+2y^2+2z^2-2xy-2yz-2xz=0\)

\(< =>x^2-2xy+y^2+x^2-2xz+z^2+y^2-2yz+z^2=0\)

\(< =>\left(x-y\right)^2+\left(x-z\right)^2+\left(y-z\right)^2=0\)

dấu"=" xảy ra<=>x=y=z

Nguyễn Lê Phước Thịnh
12 tháng 8 2021 lúc 14:39

Ta có: \(x^2+y^2+z^2=xy+xz+yz\)

\(\Leftrightarrow2x^2+2y^2+2z^2-2xy-2xz-2yz=0\)

\(\Leftrightarrow\left(x-y\right)^2+\left(x-z\right)^2+\left(y-z\right)^2=0\)

\(\Leftrightarrow x=y=z\)